
Behavior Generation with Latent Actions

Seungjae Lee1,2, Yibin Wang1, Haritheja Etukuru1, H. Jin Kim2, Nur Muhammad Mahi Shafiullah1,∗, Lerrel Pinto1,∗
1New York University 2Seoul National University

https://sjlee.cc/vq-bet

Abstract—Generative modeling of complex behaviors from
labeled datasets has been a longstanding problem in decision-
making. Unlike language or image generation, decision-making
requires modeling actions – continuous-valued vectors that are
multimodal in their distribution, potentially drawn from un-
curated sources, where generation errors can compound in
sequential prediction. A recent class of models called Behavior
Transformers (BeT) addresses this by discretizing actions using
k-means clustering to capture different modes. However, k-means
struggles to scale for high-dimensional action spaces or long
sequences, and lacks gradient information, and thus BeT suffers
in modeling long-range actions. In this work, we present Vector-
Quantized Behavior Transformer (VQ-BeT), a versatile model for
behavior generation that handles multimodal action prediction,
conditional generation, and partial observations. VQ-BeT aug-
ments BeT by tokenizing continuous actions with a hierarchical
vector quantization module. Across seven environments including
simulated manipulation, autonomous driving, and robotics, VQ-
BeT improves on state-of-the-art models such as BeT and Diffu-
sion Policies. Importantly, we demonstrate VQ-BeT’s improved
ability to capture behavior modes while accelerating inference
speed 5× over Diffusion Policies.

I. INTRODUCTION

The presently dominant paradigm in modeling human out-
puts, whether in language [1], image [38], audio [57], or
video [2], follows a similar recipe: collect a large in-domain
dataset, use a large model that fits the dataset, and possibly
as a cherry on top, improve the model output using some
domain-specific feedback or datasets. However, such a large,
successful model for generating human or robot actions in
embodied environments has been absent so far, and the issues
are apparent. Action sequences are semantically diverse but
temporally highly correlated, human behavior distributions
are massively multi-modal and noisy, and the hard-and-fast
grounding in the laws of physics means that unlike audio,
language or video-generation, even the smallest discrepancies
may cause a cascade of consequences that lead to catastrophic
failures in as few as tens of timesteps [42, 39]. The desiderata
for a good model of behaviors and actions thus must con-
tain the following abilities: to model long- and short-term
dependencies, to capture and generate from diverse modes
of behavior, and to replicate the learned behaviors precisely
[43, 9].

Prior work by [43] shows how transformers can capture the
temporal dependencies well, and to some extent even capture
the multi-modality in the data with clever tokenization. How-
ever, that tokenziation relies on k-means clustering, a method
typically based on an ℓ2 metric space that unfortunately does

not scale to high-dimensional action spaces or temporally
extended actions with lots of inter-dependencies. More recent
works have also used tools from generative modeling to
address the problem of behavior modeling [36, 9, 56], but
issues remain, for example in high computational cost when
scaling to long-horizons, or failing to express multi-modality
during rollouts.

In this work, we propose Vector-Quantized Behavior Trans-
former (VQ-BeT), which combines the long-horizon modeling
capabilities of transformers with the expressiveness of vector-
quantization to minimize the compute cost while maintaining
high fidelity to the data. We posit that a large part of the
difficulty in behavior modeling comes from representing the
continuous-valued, multi-modal action vectors. A ready an-
swer is learning discrete representations using vector quan-
tization [49] used extensively to handle the output spaces
in audio [12], video [52], and image [41]. In particular, the
performance of VQ-VAEs for generative tasks has been so
strong that a lot of recent models that generate continuous
values simply generate a latent vector in the VQ-space first
before decoding or upsampling the result [57, 2, 38].

VQ-BeT is designed to be versatile, allowing it to be readily
used in both conditional and unconditional generation, while
being performative on problems ranging across simulated
manipulation, autonomous driving, and real-robotics. Through
extensive experiments across eight benchmark environments,
we present the following experimental insights:

1) VQ-BeT achieves state-of-the-art (SOTA) performance
on unconditional behavior generation outperforming BC,
BeT, and diffusion policies in 5/7 environments (Figure 1
middle). Quantitative metrics of entropy and qualitative
visualizations indicate that this performance gain is due
to better capture of multiple modes in behavior data
(Figure 1 left).

2) On conditional behavior generation, by simply specifying
goals as input, VQ-BeT achieves SOTA performance
and improves upon GCBC, C-BeT, and BESO in 6/7
environments (Figure 1 right).

3) VQ-BeT directly works on autonomous driving bench-
marks such as nuScenes [7], matching and being compa-
rable to task-specific SOTA methods.

4) VQ-BeT is a single-pass model, and hence offers a 5×
speedup in simulation and 25× on real-world robots over
multi-pass models that use diffusion models.

5) VQ-BeT scales to real-world robotic manipulation such

https://sjlee.cc/vq-bet

Avg. rank in unconditional generation Avg. rank in conditional generation

In
fe

re
nc

e
tim

e
(m

s)

VQ-BeT (Us)
VQ-BeT (Us)

DiffusionPolicy-T

DiffusionPolicy-C

BeT
BC

C-BeT

GCBC

CFG-BESO

C-BESO

Better performance

Fa
st

er
 In

fe
re

nc
e

Better performance

Fa
st

er
 In

fe
re

nc
e

BeT DiffPolicy-T

DiffPolicy-C VQ-BeT (Us)

BC

LSTM-GMM

Rollouts on PushT Env.

Fig. 1: Qualitative and quantitative comparison between VQ-BeT and relevant baselines. On the left, we can see trajectories generated by
different algorithms while pushing a T-block to target, where VQ-BeT generates smooth trajectories covering both modes. On the right, we
show two plots comparing VQ-BeT and relevant baselines on unconditional and goal-conditional behavior generation. The comparison axes
are (x-axis) relative success represented by average rank on a suite of seven simulated tasks, and (y-axis) inference time.

as pick-and-placing objects and door closing, improving
upon prior work by 73% on long-horizon tasks.

II. BACKGROUND AND PRELIMINARIES

A. Behavior cloning

Given a dataset of continuous-valued action and observation
pairs D = {(ot ,at)}t , the goal of behavior cloning is to learn
a mapping π from observation space O to the action space
A . This map is often learned in a supervised fashion with
π as a deep neural network minimizing some loss function
L (π(o),a) on the observed behavior data pairs (o,a) ∈ D .
Traditionally, L was simply taken as the MSE loss, but its
inability to admit multiple modes of action for an observation
led to different loss formulations [30, 14, 43, 9]. Similarly,
understanding that the environment may be partially observ-
able led to modeling the distribution P(at | ot−h:t) rather than
P(at | ot). Finally, understanding that such behavior datasets
are often generated with an explicit or implicit goal, many
recent approaches condition on an (implicit or explicit) goal
variable g and learn a goal-conditioned behavior P(a | o,g).
Note that such behavior datasets crucially do not contain any
“reward” information, which makes this setup different from
reward-conditioned learning as a form of offline RL.

B. Behavior Transformers

Behavior transformer (BeT) [43] and conditional behavior
transformer (C-BeT) [10] are respectively two unconditional
and goal-conditional behavior cloning algorithms built on
top of GPT-like transformer architectures. In their respective
settings, they have shown the ability to handle temporal
correlations in the dataset, as well as the presence of multiple
modes in the behavior. While GPT [5] itself maps from
discrete to discrete domains, BeT can handle multi-modal
continuous output space by a clever tokenization trick. Prior to
training, BeT learns a k-means based encoder/decoder that can
convert continuous actions into one discrete and one contin-
uous component. Then, by learning a categorical distribution
over the discrete component and combining the component
mean with a predicted continuous “offset” variable, BeT can
functionally learn multiple modes of the data while each mode
remains continuous. While the tokenizer allows BeT handle

multi-modal actions, the use of k-means means that choosing a
good value of k is important for such algorithms. In particular,
if k is too small then multiple modes of action gets delegated
to the same bin, and if k is too large one mode gets split up
into multiple bins, both of which may result in a suboptimal
policy. Also, when the action has a large number of (poten-
tially correlated) dimensions, for example when performing
action chunking [56], non-parametric algorithms like k-means
may not capture the nuances of the data distribution. Such
shortcomings of the tokenizer used in BeT and C-BeT is one
of the major inspirations behind our work.

C. Residual Vector Quantization

In order to tokenize continuous action, we employ Residual
Vector Quantization (Residual VQ) [54] as a discretization
bottleneck. Vector quantization is a quantization technique
where continuous values are replaced by a finite number
of potentially learned codebook vectors. This process maps
the input x to an embedding vector zq in the codebook
{e1,e2, · · ·ek} by the nearest neighbor look-up:

zq = ec, where c = argmin j||x− e j||2. (1)

Residual VQ is a multi-stage vector quantizer [50] which
replaces each embedding of vanilla VQ-VAE [49] with the sum
of vectors from a finite layers of codebooks. This approach
cascades Nq layers of vector quantizations residually: the input
vector x is passed through the first stage of vector quantization
to derive z1

q. The residual, x− z1
q, is then iteratively quantized

by a sequence of Nq−1 quantizing layers, passing the updated
residual x−∑

p
i=1 zi

q to the next layer. The final quantized input
vector is then the sum of vectors from a set of finite codebooks
zq(x) = ∑

Nq
i=1 zi

q.

III. VECTOR-QUANTIZED BEHAVIOR TRANSFORMERS

In this section, we introduce VQ-BeT, which has capability
to solve both conditional and non-conditional tasks from un-
curated behavior dataset. VQ-BeT is composed of two stages:
Action discretization phase (stage 1 in Figure 2) and VQ-BeT
learning phase (stage 2 in Figure 2). Each stage is explained
in Section III-B and III-C, respectively.

∼

Residual VQ
Encoder, ϕ

Residual VQ layer

Action (Sequence)

in Dataset: 𝑎𝑡:𝑡+𝑛

Stage 1. Action Tokenization

GT Action

Reconstructed

Quantizer +

+

-
1st layer

…

Residual VQ
Decoder, ψ

Stage 2. Learning VQ-BeT

MinGPT

Ground-truth action

Observation sequence

Goal sequence

Optional

Code

Predictor

head

Offset
head

+

Hierarchical code pred.

❄

ϕ

❄

ψ

Sampled

Action

+

Focal Loss
Ground-truth action

L1
Loss

∼

Hierarchical code prediction

Sample primary

code

Sample secondary

code

: Frozen network

+

Fig. 2: Overview of VQ-BeT, broken down into the residual VQ encoder-decoder training phase and the VQ-BeT training phase. The same
architecture works for both conditional and unconditional cases with an optional goal input. In the bottom right, we show a detailed view
of the hierarchical code prediction method.

A. Sequential prediction on behavior data

Binning actions to tokenize them and predicting the tok-
enized class has been successfully applied for learning multi-
modal behavior [43, 10]. However, these k-means binning
approaches face issues while scaling, as disucssed in Sec-
tion II-B.

As such, we propose instead to learn a discrete latent
embedding space for action or action chunks, and modeling
such action latents instead. Note that, such latent models in the
form of VQ-VAEs and latent diffusion models are widely used
in multiple generative modeling subfields, including image,
music, and video [2, 57, 38]. With such discrete tokenziation,
our model can directly predict action tokens from observation
sequences optionally conditioned on goal vectors.

B. Action (chunk) discretization via Residual VQ

We employ Residual VQ-VAE [54] to learn a scalable
action discretizer and address the complexity of action spaces
encountered in the real world. The quantization process of
an action (or action chunk, where n > 1) at:t+n is learned via
learning a pair of encoder and decoder networks; φ ,ψ . We start
with passing at:t+n through the encoder φ . The resulting latent
embedding vector x = φ(at:t+n) is then mapped to an embed-
ding vector in the codebook of the first layer z1

q ∈ {e1
1, · · ·e1

k}
by the nearest neighbor look-up, and the residual is recursively
mapped to each codebook of the remaining Nq − 1 layers
zi

q ∈ {ei
1, · · ·ei

k}, where i = 2, · · · ,Nq. The latent embedding
vector x = φ(at:t+n) is represented by the sum of vectors from
codebooks zq(x) = ∑

Nq
i=1 zi

q, where each vector zi=1:Nq
q works as

the centroid of hierarchical clustering.

Then, the discretized vector zq(x) = ∑
Nq
i=1 zi

q is reconstructed
as ψ(zq(x)) by passing through the decoder ψ . We train
Residual VQ-VAE using a loss function, as shown in Eq
3. The first term represents the reconstruction loss, and the
second term is the VQ objective that shifts the embedding
vector e towards the encoded action x = φ(at:t+n). To update
the embedding vectors e1:Nq

1:k , we use moving averages rather
than direct gradient updates following [22, 34]. In all of our
experiments, it was sufficient to use Nq := 2 VQ-residual
layers, and keep the commitment loss λcommit := 1 constant.

LRecon =
∥∥at:t+n −ψ(zq(φ(at:t+n)))

∥∥
1 (2)

LRVQ =LRecon +∥SG[φ(at:t+n)]− e∥2
2 (3)

+λcommit∥φ(at:t+n)−SG[e]∥2
2, (SG : stop gradient)

We indicate the codes of the first quantizer layer as primary
code, and the codes of the remaining layers as secondary
codes. Intuitively, the primary codes in Residual VQ performs
coarse clustering over a large range within the dataset, while
the secondary codes handle fine-grained actions. (Decoded
centroids are visualized in Appendix Figure 8.)

C. Weighted update for code prediction

After training Residual VQ, we train GPT-like transformer
architecture to model the probability distribution of action or
action chunks from the sequence of observations. One of the
main differences between BeT and VQ-BeT stems from using
a learned latent space.

Since our vector quantization codebooks let us freely trans-
late between an action latent zq(φ(at:t+n)) = ∑

Nq
i=1 zi

q and the
sequence of chosen codes at each codebook, {zi

q}
Nq
i=1, we

PushT BlockPush Franka Kitchen

Play Kitchen

Multimodal Ant UR3 BlockPush

nuScenes self driving
Fig. 3: Visualization of the environments (simulated and real) where we evaluate VQ-BeT. Top row contains PushT [9], Multimodal Ant [4],
BlockPush [14], UR3 BlockPush [27], Franka Kitchen [15], and bottom row contains nuScenes self-driving [7], and our real robot environment.

Environment Metric GCBC C-BeT C-BESO CFG-BESO VQ-BeT

PushT Final IoU
(·/1)

0.02 0.02 0.30 0.25 0.39
Image PushT 0.02 0.01 0.02 0.01 0.10

Kitchen Goals
(·/4)

0.15 3.09 3.75 3.47 3.78
Image Kitchen 0.64 2.41 2.00 1.59 2.60

Multimodal Ant Goals
(·/2)

0.00 1.68 1.14 0.92 1.72
UR3 BlockPush 0.19 1.67 1.94 1.91 1.94

BlockPush Success (·/1) 0.01 0.87 0.93 0.88 0.87

TABLE I: Comparing different algorithms in goal-conditional be-
havior generation. The seven simulated robotic manipulation and
locomotion environments used here are described in Section IV-A.

use them as a labels in the code prediction Lcode loss to
learn the categorical prediction head ζ i

code for given sequence
of observations ot−h:t . Following [43, 10], we employ Focal
loss [28] to train the code prediction head by comparing the
probabilities of the predicted categorical distribution with the
actual labels zi

q. We adjust the weights between the primary
code and secondary code learning losses, leveraging our priors
about the latent space.

Lcode = Lfocal(ζ
i=1
code(ot))+βLfocal(ζ

i>1
code(ot)) (4)

Finally, the quantized behavior is obtained by passing the
sum of the predicted residual embeddings through the decoder
as follows.

⌊at:t+n⌋= ψ

(
∑
j,i

ei
j · I[ζ i

code = j)]
)

(5)

We adopt additional offset head ζoffset to maintain full
fidelity, adjusting the centers of discretized actions based on
observations. The total VQ-BeT loss is shown in Eq. 7.

Loffset =
∣∣∣at:t+n −

(
⌊at:t+n⌋+ζoffset (ot)

)∣∣∣
1

(6)

L VQ−BeT = Lcode +Loffset (7)

Environment Metric BC BeT DiffPolicy-C DiffPolicy-T VQ-BeT

PushT Final IoU
(·/1)

0.65 0.39 0.73 0.74 0.78
Image PushT 0.13 0.01 0.66 0.45 0.68

Kitchen Goals
(·/4)

0.18 3.07 2.62 3.44 3.66
Image Kitchen 0.75 2.48 3.11 3.01 2.98
Multimodal Ant 0.01 2.73 3.12 2.90 3.22

UR3 BlockPush Goals
(·/2)

0.11 1.59 1.83 1.82 1.84
BlockPush 0.01 1.67 0.47 1.93 1.79

TABLE II: Performance of different algorithms in unconditional
behavior generation tasks. We evaluate over seven simulated robotic
manipulation and locomotion tasks as described in Section IV-A.

D. Conditional and non-conditional task formulation

To provide a general-purpose behavior-learning model that
can predict multi-modal continuous actions in both conditional
and unconditional tasks, we introduce conditional and non-
conditional task formulation of VQ-BeT.

a) Non-conditional formulation: For a given dataset D =
{ot ,at}, we consider a problem of predicting the distribution
of possible action sequences at:t+n conditioned on a sampled
sequence of observations ot−h:t . Thus, we formulate the be-
havior policy as π : Oh → A n, where O and A denotes the
observation space and action space, respectively.

b) Conditional formulation: For goal-conditional tasks,
we extend the formulation above to take a goal conditioning
vector in the form of one or more observations. Given current
observation sequence and future observation sequence, we
now consider an extended policy model that predicts the
distribution of sequential behavior π : Oh ×Og → A n, where
ot−h:t ∈Oh and oN−g:N ∈Og are current and future observation
sequences.

IV. EXPERIMENTS

With both conditional and unconditional VQ-BeT, we run
experiments to understand how well they can model behavior

on different datasets and environments. We focus on two
primary properties of VQ-BeT’s generated behaviors: quality,
as evaluated by how well the generated behavior achieves
some task objective or goal, and the diversity, as evaluated
by the entropy of the distribution of accomplished subtasks or
goals. Concretely, through our experiments, we try to answer
the following questions:

1) How well do VQ-BeT policies perform on the respec-
tive environments in both conditional and unconditional
behavior generation?

2) How well does VQ-BeT capture the multi-modality
present in the dataset?

3) Does VQ-BeT scale beyond simulated tasks?
4) What design choices of VQ-BeT make the most impact

in its performance?

A. Environments, datasets, and baselines

Across our experiments, we use a variety of environments
and datasets to evaluate VQ-BeT (Figure 3). In simulation, we
evaluate the wider applicability of VQ-BeT on eight bench-
marks; namely, six manipulation tasks including two image-
based tasks: (a) PushT, (b) Image PushT, (c) Kitchen, (d) Im-
age Kitchen, (e) UR3 BlockPush, (f) BlockPush; a locomotion
task, (g) Multimodal Ant; and a self-driving benchmark, (h)
NuScenes. The environments are visualized in Figure 3, and a
detailed descriptions of each task is provided in Appendix A.
We also evaluate on a real-world environment with twelve
tasks (five single-phase, three multi-phase tasks and four long-
horizon tasks) described in Section IV-G.

a) Baselines: We compare VQ-BeT against the SOTA
methods in behavior modeling in both conditional and uncon-
ditional categories. In both of these categories, we compare
against transformer- and diffusion-based baselines.

For unconditional behavior generation, we compare against
MLP-based behavior cloning, the original Behavior Trans-
formers (BeT) [43] and Diffusion Policy [9]. The BeT ar-
chitecture uses a k-means tokenization as explained in Sec-
tion II-B. Diffusion policy [9], on the other hand, uses a
denoising diffusion head [18] to model multi-modality in the
behaviors. We use both the convolutional and transformer
variant of the diffusion policy as baselines for our work since
they excel in different cases.

For goal-conditional behaviors, we compare against simple
goal conditioned BC, Conditional Behavior Transformers (C-
BeT) [10] and BESO [40]. C-BeT uses k-means tokenization
but otherwise has a similar architecture to ours. BESO uses
denoising diffusion, and has a conditioned variant (C-BESO)
and a classifier-free guided variant (CFG-BESO) that we
compare against.

B. Performance of behavior generated by VQ-BeT

We evaluate VQ-BeT in a set of goal-conditional tasks in
Table I and a set of unconditional tasks in Table II. On the
PushT environments, we look at final and max coverage, where
the coverage value is the IoU between the T block and the tar-
get T position. For the unconditional Kitchen, BlockPush, and

2

3

4

p4
-E

nt
ro

py 3.07

2.62

3.44
3.66

Kitchen

2.2

2.7

3.2

p4
-E

nt
ro

py

2.48

3.11
3.01 2.98

Image Kitchen

2.6

3.0

3.4

p4
-E

nt
ro

py

2.73

3.12

2.90

3.22

Ant

1.9

1.9

2.0

p2
-E

nt
ro

py 1.95
1.94

1.95

1.99
BlockPush

0.9

0.9

1.0

p2
-E

nt
ro

py

0.99

0.91

0.98
0.99

UR3 BlockPush

BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT (Us)

Fig. 4: A comparison between the behavior entropy of the algorithms,
calculated based on their task completion order, on five of our
simulated environments.

Ant tasks, we look at the total number of tasks completed in
expectation, where the maximum possible number of tasks is
4, 2, and 4 respectively. For the conditional environments, we
report the expected number of successes given a commanded
goal sequence, where the numbers of commanded goals are 4
in Kitchen, 2 in Ant, and 2 in BlockPush. Across all of these
metrics, a higher number designates a better performance.

From Tables I and II, we see that in both conditional and
unconditional tasks, VQ-BeT largely outperforms or matches
the baselines. First, on the conditional tasks, we find that
VQ-BeT outperforms all baselines in all tasks except for
BlockPush. In BlockPush, VQ-BeT performs on par with
BeT, while C-BESO and CFG-BESO performs slighly better.
Note that BlockPush has one of the simplest action spaces
(2-D ∆x,∆y) in the dataset while also having the largest
demonstration dataset, and thus the added advantage of having
vector quantized actions may not have such a strong edge.
Next, in unconditional tasks, we find that VQ-BeT outperforms
all baselines in Franka Kitchen (state), Ant Multimodal, UR3
Multimodal, and both PushT (state and image) environments.
In BlockPush environment, VQ-BeT is outperformed by
DiffusionPolicy-T, while in Image Kitchen it is outperformed
by DiffusionPolicy-C. However, VQ-BeT empirically shows
stable performances on all tasks, while DiffusionPolicy-T
struggles in Image PushT environments, and DiffusionPolicy-
C underperforms in Kitchen and BlockPush environments.

C. How well does VQ-BeT capture multimodality?

One of the primary promises of behavior generation models
is to capture the diversity present in the data, rather than simply
copying a single mode of the existing data very well. Thus, for
a quantitative measure we examine the behavior entropy of the
models in the unconditional behavior generation task. Behav-
ior entropy here tries to captures the diversity of a model’s
generated long horizon behaviors. We compare the final-
subtask entropy as a balanced metric between performance
and diversity. We see that VQ-BeT outperforms all baselines
in all tasks except for Image Kitchen, where it’s outperformed
by DiffusionPolicy-T. However, behavior diversity is hard to

capture properly in a single number, which is why we also
present the diversity of generated behavior on the PushT task
in Figure 1 (left). There, we can see how VQ-BeT captures
both modes of the dataset in rollouts, while also generating
overall smooth trajectories.

D. Inference-time efficiency of VQ-BeT

Unconditional C-BeT C-BESO CFG-BESO VQ-BeT

Single step 22.6ms 25.9ms 41.7ms 22.8ms
Multi step ✗ ✗ ✗ 23.3ms

Conditional BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT

Single step 13.2ms 100.5ms 98.6ms 15.1ms
Multi step ✗ 100.7ms 98.6ms 15.2ms

TABLE III: Inference times for VQ-BeT and baselines in kitchen
environment. For DiffusionPolicy we rolled-out with 10-iteration
diffusion, following their real-world settings. The methods that only
support single-step action prediction are marked with ✗.

Denoising diffusion based models such as DiffusionPolicy
and BESO require multiple forward passes from the network
to generate a single action or action chunk. In contrast, VQ-
BeT can generate action or action chunks in a single forward
pass. As a result, VQ-BeT enjoys much faster inference times,
as shown in Table III. Receding horizon control using action
chunking can speed up some of our baselines, but VQ-BeT
can take advantage of the same, speeding up the method
proportionally. Moreover, receding horizon control is not a
silver bullet; it can be problematic in affordable, inaccurate
hardware, as we show in Section IV-G in our real world
experiments.

E. Adapting VQ-BeT for autonomous driving

While our previous experiments showed robotic manipula-
tion or locomotion results, learning from multi-modal behavior
datasets has wider applications. We evaluate VQ-BeT in one
such case, in a self-driving trajectory planning task using the
nuScenes [7] dataset. In this task, given a few frames of
observations, the model must predict the next six frames of an
car’s location. While nuScenes usually require the trajectory
be predicted from the raw images, we adapted the GPT-
Driver [32] framework which uses pretrained models to extract
vehicle and obstacle locations and velocities. However, this

Method Access to
information

Avg. L2
(m) (↓)

Avg. collision
(%) (↓)

FF [19]

Full

1.43 0.43
EO [26] 1.6 0.33
UniAD [21] 1.03 0.31
Agent-Driver [33] 0.74 0.21

GPT-Driver [32]
Partial

0.84 0.44
Diffusion-based traj. model 0.96 0.49
VQ-BeT 0.73 0.29

TABLE IV: (Lower is better) Trajectory planning performance on the
nuScenes environment. We bold the best partial-information model
and underline the best full-information model. Even with partial
information about the environment, VQ-BeT can match or beat the
SOTA models on the L2 error metric.

2.5

3.0

3.5

Co
m

pl
et

ed
 g

oa
ls 3.22

2.93
2.99

2.91
2.82

3.16

Kitchen

3.0

3.5

4.0

Co
m

pl
et

ed
 g

oa
ls

3.78

3.67 3.65

3.76

0.52

3.11

Ant
0.5

1.0

1.5

L 2
 d

ist
. f

ro
m

 G
T

tra
j. 0.73 0.73 0.74 0.73

1.41

nuScenes

VQ-BeT
= 1

Vanilla VQ
Autoregressive codes

W/o offset
W/ chunking

Fig. 5: Summary of our ablation experiments. The five different axes
of ablation is described in Section IV-F.

processing also discards road lane and shoulder informations,
which makes collision avoidance hard.

In Table IV, we show the performance of VQ-BeT in this
task, measured by how closely it followed the ground truth
trajectory in test scenes, as well as how likely the generated
trajectory was to collide with the environment. Note that
collision avoidance is especially difficult for agents with partial
information since they do not have any lane information. We
find that VQ-BeT outperforms all other methods in trajectory
following, achieving the lowest average L2 distance between
the ground truth trajectories and generated trajectories. More-
over, VQ-BeT achieves a collision probability that is better
or on-par with older self-driving methods, while not being
designed for self-driving in particular.

F. Design decisions that matter for VQ-BeT

In this section, we examine how changes in each module
of VQ-BeT affect its performance. We ablate the following
components: using residual vs. vanilla VQ, using an offset
head, using action chunking, predicting the VQ-codes au-
toregressively, and weighing primary and secondary codes
equally by setting β = 1 in Eq. 4. We perform these ablation
experiments in the conditional Kitchen, unconditional Ant,
and the nuScenes self-driving task, and the result summary
is presented in Figure 5.

We note that performance-wise, not using a residual VQ
layer has a significant negative impact, which we believe is
because of the lack of expressivity from a single VQ-layer.
A similar drop in performance shows up when we weigh
the two VQ layers equally by setting β = 1, in Eq. 4. Both
experiments seems to provide evidence that important expres-
sivity is conferred on VQ-BeT using residual VQs. Next,
we note that predicting the VQ-codes autoregressively has a
negative impact on the kitchen environment. This performance
drop is anomalous, since in the real world, we found that
the autoregressive (and thus causal) prediction of primary
and secondary codes is important for good performance. In
the environments where it is possible, we also tried action
chunking [56]; however the performance for such models were
lacking. Since VQ-BeT models are small and fast, action
chunking isn’t necessary even when running it on a real robot
in real time. Finally, we found that the offset prediction is
quite important for VQ-BeT, which points to how important

full action fidelity is for sequential decision making tasks that
we evaluate on.

G. Adapting VQ-BeT to real-world robots

While our previous experiments evaluated VQ-BeT in sim-
ulated environments, one of the primary potential applications
of it is in learning robot policies from human demonstrations.
In this section, we set up a real robot environment, collect
some data, and evaluate policies learned using VQ-BeT.

a) Environment and dataset: For single-phase and two-
phase tasks, we run our experiments in a kitchen-like envi-
ronment with a toaster oven, a mini-fridge, and a small can
in front of the robot as shown in Figure 3. For long-horizon
scenarios consisting of more than three tasks, we also test on
a real kitchen environment as shown in Figure 6. We use a
similar robot and data collection setup as Dobb·E [44], and use
the Hello Robot: Stretch [25] for policy rollouts. We create a
set of single-phase and multi-phase tasks on this environment
(See Table V, or Appendix B for details). While the single-
phase tasks can only be completed in one way, some multi-
phase tasks have multi-modal solutions in the benchmark and
the datasets.

b) Baselines: In this environment, we use MLP-BC and
BC with Depth as our simple baselines, and DiffusionPolicy-
T as our multi-modal baseline. To handle visual inputs, all
models are prepended with the HPR encoder from Shafiullah
et al. [44] which is then fine-tuned during training.

Method Open Toaster Close Toaster Close Fridge Can to Toaster Can to Fridge Total

VQ-BeT 8/10 10/10 10/10 10/10 9/10 47/50
DiffPol-T† 8/10 9/10 8/10 10/10 10/10 45/50
BC w/ Depth 0/10 7/10 10/10 8/10 2/10 27/50
BC 0/10 8/10 7/10 9/10 5/10 29/50

Method Can to Fridge →
Close Fridge

Can to Toaster →
Close Toaster

Close Fridge
and Toaster Total

VQ-BeT 6/10 8/10 5/10 19/30
DiffPol-T† 4/10 1/10 6/10 11/30
BC w/ Depth 2/10 0/10 2/10 4/30
BC 2/10 1/10 4/10 7/30

TABLE V: Real world robot experiments solving a number of stan-
dalone tasks (top) and two-task sequences (bottom). Here, † denotes
that we modified DiffusionPolicy-T to improve its performance; see
Section IV-G paragraph “Practical concerns”.

c) Results: We present the experiment results from the
real world environment in Table V and Table VI. Table V is
split in two halves for single-phase and two-phase tasks. On
the single-phase tasks, we see that, simple MLP-BC models
are able to perform almost all tasks with some success, which
shows that the subtasks are achievable, and the baselines
are implemented well. On these single-phase tasks, VQ-
BeT marginally outperforms DiffusionPolicy-T, while both
algorithms achieve a ≥ 90% success rate. However, the more
interesting comparison is in the two-phase, longer horizon
tasks. Here, VQ-BeT outperforms all baselines, including
DiffusionPolicy, by a relative margin of 73%.

Besides comparisons with baselines, we also notice multi-
modality in the behavior of VQ-BeT. Especially in the task
“Close Fridge and Toaster”, we note that our model closes

the doors in both possible orders during rollouts rather than
collapsing to a single mode of behavior.

Additionally, we present results from long-horizon real
world experiments consisting of a sequence of three or more
subtasks in Figure 6 and Table VI. We consider interactions
with a wider variety of environments (communal kitchen and
conference room) and objects (bread, box, bag, and drawer)
compared to the single- or two-phase tasks in order to evaluate
VQ-BeT in more general scenes. Overall, we see that VQ-
BeT has at least thrice the success rate of DiffusionPolicy at
the end of all four tasks. For Task 1 and 2, we observe that
VQ-BeT gains a performance advantage toward the end of
the episode, although VQ-BeT and DiffusionPolicy perform
similarly at the beginning of the episodes. Also note that Task
2 is difficult in our ego-only camera setup, since the bag is
out of the view while grabbing the bread. For Tasks 3 and 4,
we observe that VQ-BeT outperforms DiffusionPolicy in all
subtasks and notably, the performance difference is even more
pronounced toward the end of the episode. These long-horizon
task results continue to suggest that VQ-BeT may overfit less
and learn more robust behavior policies in longer horizons
tasks.

d) Practical concerns: In practice, we noticed that
receding-horizon control as used by Chi et al. [9] fails
completely in our environment (See Appendix Table XI for
comparison to closed loop control). Our low-cost mobile
manipulator robot lacks precise motion control unlike more
expensive robot arms like Franka Panda. This controller noise
causes models to go out of distribution during even a short
period (three timesteps) of open-loop rollout. To resolve this,
we rolled out every policy fully closed-loop, which resulted
in a much larger inference time gap (25×) between VQ-BeT
and Diffusion Policy as presented in Table VII.

V. RELATED WORKS

a) Deep generative models for modeling behavior: VQ-
BeT builds on a long line of works that leveraged tools from
generative modeling to learn diverse behaviors. The earliest
examples are in inverse RL literature [24, 53, 13, 17], where
such tools were used to learn a reward function given example
behavior. Using generative priors for action generationi, such
as GMM by Lynch et al. [30] or EBMs by Florence et al.
[14], or simply fitting multi-modal action distributions [45, 37]
became more common with large, human collected behavior
datasets [31, 15]. Subsequently, a large body of work [43, 10,
36, 9, 40, 8] used generative modeling tools for generalized
behavior learning from multi-modal datasets.

b) Action reparametrization: While Shafiullah et al.
[43] is the closest analogue to VQ-BeT, the practice of
reparametrizing actions for easier or better control goes back
to “bang-bang” controllers [6, 3] replacing continuous actions
with extreme discrete values. Discretizing each action dimen-
sion separately, however, may exponentially explode the action
space, which is generally addressed by assuming each action
dimension as independent [48] or causally dependent [35].
Without priors on the action space, each of these assumptions

Open Drawer Grasp the Box Close DrawerPlace in the DrawerInitial Position

Pick up Bread Place in the Bag Place on the TablePick up backInitial Position

Pick up Can Place in the Fridge Open Oven DoorClose Fridge DoorInitial Position

Demo: Open Drawer ! Pick and Place Box ! Close Drawer

Demo: Pick up Bread ! Place in the Bag ! Pick up Bag ! Place on the Table

Demo: Can to Fridge ! Fridge Closing ! Toaster Opening

Fig. 6: Visualization of the trajectory VQ-BET generated in a long-horizon real world environment. Each demo consists of three to four
consecutive tasks. Please refer to Table VI for the success rates for each task.

Task 1 Approach Handle Grasp Handle Open Drawer Let Handle Go Approach the Box Grasp the Box Move to Drawer Place Box inside Go in front of Drawer Close Drawer

VQ-BeT 8/10 7/10 7/10 7/10 7/10 7/10 7/10 6/10 6/10 6/10
DiffPol-T† 10/10 9/10 9/10 9/10 8/10 3/10 3/10 3/10 3/10 2/10
Task 2 Approach Bread Grasp the Bread Move to the Bag Place Bread inside Approach the Handle Grasp the Handle Lift Bag up Place on the table Let Handle go

VQ-BeT 10/10 10/10 10/10 4/10 3/10 3/10 3/10 3/10 3/10
DiffPol-T† 9/10 9/10 9/10 9/10 2/10 2/10 2/10 1/10 1/10
Task 3 Grasp Can Pick up Can Can into Fridge Let Go of Can Move Left of Fridge Door Close Fridge Door Go in Front of Toaster Grasp Toaster Handle Open Toaster Return to Home Pos.

VQ-BeT 10/10 10/10 10/10 8/10 8/10 8/10 8/10 7/10 7/10 7/10
DiffPol-T† 5/10 5/10 5/10 4/10 2/10 2/10 2/10 2/10 2/10 2/10
Task 4 Grasp Can Pick up Can Can into Toaster Drops Can on Tray Goes Below Toaster Door Close Toaster Door Backs up Move Left of Fridge Door Close Fridge Return to Home Pos.

VQ-BeT 10/10 10/10 8/10 8/10 8/10 6/10 6/10 6/10 6/10 6/10
DiffPol-T† 9/10 9/10 8/10 8/10 8/10 1/10 2/10 2/10 2/10 1/10

TABLE VI: Long-horizon real world robot experiments (Figure 6). Each task consists of three to four sequences; Task 1 (Open Drawer →
Pick and Place Box → Close Drawer), Task 2 (Pick up Bread → Place in the Bag→ Pick up Bag → Place on the Table), Task 3 (Can to
Fridge → Fridge Closing → Toaster Opening), and Task 4 (Can to Toaster → Toaster Closing → Fridge Closing). Here, † denotes that we
modified DiffusionPolicy-T to improve its performance as explained in Section IV-G paragraph “Practical concerns”.

RTX A4000 GPU 4-Core Intel CPU
VQ-BeT 18.06 207.25
DiffusionPolicy-T 573.49 5243.82
BC w/ Depth 5.66 87.28
BC 4.73 83.28

TABLE VII: Average inference time for real robot (in milliseconds).
The GPU column is calculated on our workstation while the CPU
column is calculated on the Hello Robot’s onboard computer.

may be limiting, which is why later work opted to learn the
reparametrization [45, 11, 29] similar to VQ-BeT. On another
hand, options [47, 46] abstract actions temporally but can
be challenging to learn from data. Many applications instead
hand-craft primitives as a parametrized action space [16]
which may not scale well for different tasks.

VI. CONCLUSION

In this work, we introduce VQ-BeT, a model for learning
behavior from open-ended, multi-modal data by tokenizing
the action space using a residual VQ-VAE, and then using a
transformer model to predict the action tokens. While we show
that VQ-BeT performs well on a plethora of manipulation,
locomotion, and self-driving tasks, an exciting application
of such models would be in scaling them up to large be-
havior datasets containing orders of magnitude more data,
environments, and behavior modes. Finding a shared latent
space of actions between different embodiments may let us
“translate” policies between different robots or even from
human to robots. Finally, a learned, discrete action space may
also make real-world RL application faster, which we would
like to explore in the future.

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Her-
rmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Junhwa
Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A
space-time diffusion model for video generation. arXiv
preprint arXiv:2401.12945, 2024.

[3] Richard Bellman, Irving Glicksberg, and Oliver Gross.
On the “bang-bang” control problem. Quarterly of
Applied Mathematics, 14(1):11–18, 1956.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901,
2020.

[6] Donald Wayne Bushaw. Differential equations with
a discontinuous forcing term. PhD thesis, Princeton
University, 1952.

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh
Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes:
A multimodal dataset for autonomous driving. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11621–11631, 2020.

[8] Lili Chen, Shikhar Bahl, and Deepak Pathak. Playfusion:
Skill acquisition via diffusion from language-annotated
play. In Conference on Robot Learning, pages 2012–
2029. PMLR, 2023.

[9] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion. arXiv preprint arXiv:2303.04137, 2023.

[10] Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi
Shafiullah, and Lerrel Pinto. From play to policy:
Conditional behavior generation from uncurated robot
data. arXiv preprint arXiv:2210.10047, 2022.

[11] Robert Dadashi, Léonard Hussenot, Damien Vincent,
Sertan Girgin, Anton Raichuk, Matthieu Geist, and
Olivier Pietquin. Continuous control with action
quantization from demonstrations. arXiv preprint
arXiv:2110.10149, 2021.

[12] Prafulla Dhariwal, Heewoo Jun, Christine Payne,
Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint
arXiv:2005.00341, 2020.

[13] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided

cost learning: Deep inverse optimal control via policy
optimization. In International conference on machine
learning, pages 49–58. PMLR, 2016.

[14] Pete Florence, Corey Lynch, Andy Zeng, Oscar A
Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson.
Implicit behavioral cloning. In Conference on Robot
Learning, pages 158–168. PMLR, 2022.

[15] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solv-
ing long-horizon tasks via imitation and reinforcement
learning. arXiv preprint arXiv:1910.11956, 2019.

[16] Matthew Hausknecht and Peter Stone. Deep reinforce-
ment learning in parameterized action space. arXiv
preprint arXiv:1511.04143, 2015.

[17] Jonathan Ho and Stefano Ermon. Generative adversar-
ial imitation learning. Advances in neural information
processing systems, 29, 2016.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in neural infor-
mation processing systems, 33:6840–6851, 2020.

[19] Peiyun Hu, Aaron Huang, John Dolan, David Held, and
Deva Ramanan. Safe local motion planning with self-
supervised freespace forecasting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12732–12741, 2021.

[20] Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li,
Junchi Yan, and Dacheng Tao. St-p3: End-to-end vision-
based autonomous driving via spatial-temporal feature
learning. In European Conference on Computer Vision,
pages 533–549. Springer, 2022.

[21] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao
Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin,
Wenhai Wang, et al. Planning-oriented autonomous
driving. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 17853–
17862, 2023.

[22] Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex
Lamb, Kenji Kawaguchi, Xin Li, Romain Laroche,
Yoshua Bengio, and Remi Tachet Des Combes. Dis-
crete factorial representations as an abstraction for goal
conditioned reinforcement learning. arXiv preprint
arXiv:2211.00247, 2022.

[23] Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie
Chen, Helong Zhou, Qian Zhang, Wenyu Liu, Chang
Huang, and Xinggang Wang. Vad: Vectorized scene
representation for efficient autonomous driving. arXiv
preprint arXiv:2303.12077, 2023.

[24] Mrinal Kalakrishnan, Peter Pastor, Ludovic Righetti,
and Stefan Schaal. Learning objective functions for
manipulation. In 2013 IEEE International Conference
on Robotics and Automation, pages 1331–1336. IEEE,
2013.

[25] Charles C Kemp, Aaron Edsinger, Henry M Clever, and
Blaine Matulevich. The design of stretch: A compact,
lightweight mobile manipulator for indoor human envi-

ronments. In 2022 International Conference on Robotics
and Automation (ICRA), pages 3150–3157. IEEE, 2022.

[26] Tarasha Khurana, Peiyun Hu, Achal Dave, Jason Ziglar,
David Held, and Deva Ramanan. Differentiable ray-
casting for self-supervised occupancy forecasting. In
European Conference on Computer Vision, pages 353–
369. Springer, 2022.

[27] Jigang Kim, J hyeon Park, Daesol Cho, and H Jin Kim.
Automating reinforcement learning with example-based
resets. IEEE Robotics and Automation Letters, 7(3):
6606–6613, 2022.

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection.
In Proceedings of the IEEE international conference on
computer vision, pages 2980–2988, 2017.

[29] Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar,
Xinyang Geng, and Sergey Levine. Action-quantized
offline reinforcement learning for robotic skill learning.
In Conference on Robot Learning, pages 1348–1361.
PMLR, 2023.

[30] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar,
Jonathan Tompson, Sergey Levine, and Pierre Sermanet.
Learning latent plans from play. In Conference on robot
learning, pages 1113–1132. PMLR, 2020.

[31] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan
Booher, Max Spero, Albert Tung, Julian Gao, John
Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A
crowdsourcing platform for robotic skill learning through
imitation. In Conference on Robot Learning, pages 879–
893. PMLR, 2018.

[32] Jiageng Mao, Yuxi Qian, Hang Zhao, and Yue Wang.
Gpt-driver: Learning to drive with gpt. arXiv preprint
arXiv:2310.01415, 2023.

[33] Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone, and
Yue Wang. A language agent for autonomous driving.
arXiv preprint arXiv:2311.10813, 2023.

[34] Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre
Lacoste, and Sai Rajeswar. Choreographer: Learning
and adapting skills in imagination. arXiv preprint
arXiv:2211.13350, 2022.

[35] Luke Metz, Julian Ibarz, Navdeep Jaitly, and James
Davidson. Discrete sequential prediction of continuous
actions for deep rl. arXiv preprint arXiv:1705.05035,
2017.

[36] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave
Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcar-
cel Macua, Shan Zheng Tan, Ida Momennejad, Katja
Hofmann, et al. Imitating human behaviour with dif-
fusion models. arXiv preprint arXiv:2301.10677, 2023.

[37] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accel-
erating reinforcement learning with learned skill priors.
In Conference on robot learning, pages 188–204. PMLR,
2021.

[38] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion models

for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023.

[39] Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kan-
nan Ramchandran. Toward the fundamental limits of
imitation learning. Advances in Neural Information
Processing Systems, 33:2914–2924, 2020.

[40] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf
Lioutikov. Goal-conditioned imitation learning us-
ing score-based diffusion policies. arXiv preprint
arXiv:2304.02532, 2023.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10684–10695, 2022.

[42] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelli-
gence and statistics, pages 627–635. JMLR Workshop
and Conference Proceedings, 2011.

[43] Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty
Altanzaya, and Lerrel Pinto. Behavior transformers:
Cloning k modes with one stone. Advances in neural
information processing systems, 35:22955–22968, 2022.

[44] Nur Muhammad Mahi Shafiullah, Anant Rai, Haritheja
Etukuru, Yiqian Liu, Ishan Misra, Soumith Chintala, and
Lerrel Pinto. On bringing robots home. arXiv preprint
arXiv:2311.16098, 2023.

[45] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu,
Nicholas Rhinehart, and Sergey Levine. Parrot: Data-
driven behavioral priors for reinforcement learning. arXiv
preprint arXiv:2011.10024, 2020.

[46] Martin Stolle and Doina Precup. Learning options in
reinforcement learning. In Abstraction, Reformulation,
and Approximation: 5th International Symposium, SARA
2002 Kananaskis, Alberta, Canada August 2–4, 2002
Proceedings 5, pages 212–223. Springer, 2002.

[47] Richard S Sutton, Doina Precup, and Satinder Singh.
Between mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[48] Arash Tavakoli, Fabio Pardo, and Petar Kormushev.
Action branching architectures for deep reinforcement
learning. In Proceedings of the aaai conference on
artificial intelligence, volume 32, 2018.

[49] Aaron Van Den Oord, Oriol Vinyals, et al. Neural
discrete representation learning. Advances in neural
information processing systems, 30, 2017.

[50] A Vasuki and PT Vanathi. A review of vector quantiza-
tion techniques. IEEE Potentials, 25(4):39–47, 2006.

[51] Bob Wei, Mengye Ren, Wenyuan Zeng, Ming Liang,
Bin Yang, and Raquel Urtasun. Perceive, attend, and
drive: Learning spatial attention for safe self-driving. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 4875–4881. IEEE, 2021.

[52] Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li,
Lei Ji, Fan Yang, Guillermo Sapiro, and Nan Duan.
Godiva: Generating open-domain videos from natural
descriptions. arXiv preprint arXiv:2104.14806, 2021.

[53] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner.
Maximum entropy deep inverse reinforcement learning.
arXiv preprint arXiv:1507.04888, 2015.

[54] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi. Soundstream: An
end-to-end neural audio codec. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 30:495–
507, 2021.

[55] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat,
Bin Yang, Sergio Casas, and Raquel Urtasun. End-to-
end interpretable neural motion planner. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8660–8669, 2019.

[56] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705,
2023.

[57] Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix
Kreuk, Alexandre Défossez, Jade Copet, Gabriel Syn-
naeve, and Yossi Adi. Masked audio generation using
a single non-autoregressive transformer. arXiv preprint
arXiv:2401.04577, 2024.

APPENDIX

A. Simulated environments

Across our experiments, we use a variety of environments and datasets to evaluate VQ-BeT. We give a short descriptions
of them here, and depiction of them in Figure 3:
• Franka Kitchen: We use the Franka Kitchen robotic manipulation environment introduced in [15] with a Franka Panda arm

with a 7 dimensional action space and 566 human collected demonstrations. This environment has seven possible tasks, and
each trajectory completes a collection of four tasks in some order. While the original environment is state-based, we create
an image-based variant of it by rendering the states with the MuJoCo renderer as an 112 by 112 image. In the conditional
variant of the environment, the model is conditioned with future states or image goals (Image Kitchen).

• PushT: We adopt the PushT environment introduced in [9] where the goal is to push a T-shaped block on a table to a target
position. The action space here is two-dimensional end-effector velocity control. Similar to the previous environment, we
create an image based variant of the environment by rendering it, and a goal conditioned variant of the environment by
conditioning the model with a final position. This dataset has 206 demonstrations collected by humans.

• BlockPush: The BlockPush environment was introduced by Florence et al. [14] where the goal of the robot is to push two
red and green blocks into two (red and green) target squares in either order. The conditional variant is conditioned by the
target positions of the two blocks. The training dataset here consists of 1,000 trajectories, with an equal split between all
four possibilities of (block target, push order) combinations, collected by a pre-programmed primitive.

• UR3 BlockPush: In this task, an UR3 robot tries to move two blocks to two goal circles on the other side of the table [27].
Each demonstration is multimodality, since either block can move first. In the non-conditional setting, we evaluate whether
each block reaches the goal, while in the conditional setting, we evaluate in which order the blocks get to the given target
point.

• Multimodal Ant: We adopt a locomotion task that requires the MuJoCo Ant [4] robot to reach goals located at each corner
of the map. The demonstration contains trajectories that reach the four goals in different orders. In the conditional setting,
the performance is evaluated by reaching two goals given by the environment, while in the unconditional setting, the agent
tries to reach all four goals.

• nuScenes self-driving: Finally, to evaluate VQ-BeT on environments beyond robotics, we use the nuScenes [7] self-driving
environment as a test setup. We use the preprocessed, object-centric dataset from Mao et al. [32] with 684 demonstration
scenes where the policy must predict the next six timesteps of the driving trajectory. In this environment, the trajectories are
all goal-directed, where the goal of which direction to drive is given to the policy at rollout time. In Appendix Section E,
we detail how we process the GPT-Driver Mao et al. [32] dataset for use in our method.

B. Real-world environments

We run our experiments on a kitchen-like environment, with a toaster oven, a mini-fridge, and a small can in front of them,
as seen in Fig. 3. In this environment, we define the tasks as opening or closing the fridge or toaster, and moving the can from
the table to the fridge or toaster and vice versa. During data collection and evaluation, the starting position for the gripper and
the position of the cans are randomized within a predefined area, while the location of the fridge and the toaster stays fixed.
We use a similar robot and data collection setup as Dobb·E [44], using the Stick to collect 45 demonstrations for each task,
using 80% of them for training and 20% for validation, and using the Hello Robot: Stretch [25] for policy rollouts. While
some of the single tasks can only be completed in one way, the we also test the model on sequences of two tasks, for example
closing oven and fridge, which can be completed in multiple ways. This task multi-modality is also captured in the dataset:
tasks that can be completed in multiple ways have multi-modal demonstration data.

C-BeT C-BESO CFG-BESO VQ-BeT

Kitchen
Full 3.09 3.75 3.47 3.78
1/4 2.77 2.62 3.07 3.46

1/10 2.59 2.67 2.73 2.95
Image Kitchen Full 2.41 2.00 1.59 2.60

Ant Multimodal
Full 1.68 1.14 0.92 1.72
1/4 0.85 0.58 0.52 1.23

1/10 0.35 0.39 0.40 1.06

BlockPush Multimodal
Full 0.87 0.93 0.88 0.87
1/4 0.48 0.52 0.47 0.62

1/10 0.10 0.29 0.17 0.13

UR3 Multimodal
−ℓ1 -0.129 -0.090 -0.091 -0.085
p1 1.00 0.98 0.97 1.00
p2 0.67 0.96 0.94 0.94

PushT Final Coverage 0.02 0.30 0.25 0.39
Max Coverage 0.11 0.41 0.38 0.49

Image PushT Final Coverage 0.01 0.02 0.01 0.10
Max Coverage 0.02 0.02 0.02 0.12

TABLE VIII: Quantitative results of VQ-BeT and related baselines on conditional tasks.

BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT

PushT Final Coverage 0.39 0.73 0.74 0.78
Max Coverage 0.73 0.86 0.83 0.80

Image PushT Final Coverage 0.01 0.66 0.45 0.68
Max Coverage 0.01 0.82 0.71 0.73

Kitchen

p1 0.99 0.94 0.99 1.00
p2 0.93 0.86 0.98 0.98
p3 0.71 0.56 0.87 0.91
p4 0.44 0.26 0.60 0.77

p3-Entropy 3.44 3.18 3.38 3.42
p4-Entropy 4.01 3.62 3.89 4.07

Image Kitchen

p1 0.97 0.99 0.97 1.00
p2 0.73 0.95 0.90 0.93
p3 0.51 0.73 0.75 0.67
p4 0.27 0.44 0.39 0.38

p3-Entropy 3.03 2.36 3.01 3.20
p4-Entropy 2.77 2.93 3.55 3.32

Ant Multimodal

p1 0.91 0.96 0.87 0.94
p2 0.79 0.81 0.78 0.83
p3 0.67 0.73 0.69 0.75
p4 0.36 0.62 0.56 0.70

p3-Entropy 3.89 4.26 4.27 4.19
p4-Entropy 3.55 4.18 4.11 4.20

BlockPush Multimodal
p1 0.96 0.36 0.99 0.96
p2 0.71 0.11 0.94 0.83

p2-Entropy 1.95 1.94 1.95 1.99

UR3 Multimodal
p1 0.84 1.00 1.00 1.00
p2 0.75 0.83 0.82 0.84

p2-Entropy 0.99 0.91 0.98 0.99

TABLE IX: Quantitative results of VQ-BeT and related baselines on non-conditional tasks.

L2 (↓) Collision (%) (↓)
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 metrics

ST-P3 [20] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
VAD [23] 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14

GPT-Driver [32] 0.20 0.40 0.70 0.44 0.04 0.12 0.36 0.17
Agent-Driver [33] 0.16 0.34 0.61 0.37 0.02 0.07 0.18 0.09

Diffusion-based Traj. Prediction 0.21 0.43 0.80 0.48 0.01 0.07 0.35 0.14
VQ-BeT 0.17 0.33 0.60 0.37 0.02 0.11 0.34 0.16

UniAD metrics

NMP [55] - - 2.31 - - - 1.92 -
SA-NMP [51] - - 2.05 - - - 1.59 -

FF [19] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO [26] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33

UniAD [21] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
GPT-Driver [32] 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44

Agent-Driver [33] 0.22 0.65 1.34 0.74 0.02 0.13 0.48 0.21
Diffusion-based Traj. Prediction 0.27 0.78 1.83 0.96 0.00 0.27 1.21 0.49

VQ-BeT 0.22 0.62 1.34 0.73 0.02 0.16 0.70 0.29

TABLE X: (Lower is better) Trajectory planning performance on the nuScenes [7] self-driving environment. We bold the best performing
model. Note that while Agent-Driver outperforms us in some Collision avoidance benchmarks, it is because they use a lot more information
than what is available to our agent, namely the road lanes and the shoulders information, without which avoiding collision is difficult for
our model or GPT-Driver [32]. Even with such partial information about the environment, VQ-BeT can match or beat the SOTA models in
predicting L2 distance from ground truth trajectory.

BeT DiffusionPolicy-C VQ-BeTDiffusionPolicy-T

3.04ms 103.08ms 77.53ms 3.17ms

BC LSTM-GMM

0.13ms 2.45ms

Success
Traj.

Method

Infer. time

Fa
ilu

re
 c

as
es

:
H

ig
h

er
r.

Fa
ilu

re
 c

as
es

:
M

od
e

C
ol

la
ps

e

BeT

DiffusionPolicy-T

VQ-BeT

VQ-BeT

Fig. 7: Multi-modal behavior visualization on pushing a T-block to target. On the left, we can see trajectories generated by different algorithms
and their inference time per single step, where VQ-BeT generate smooth trajectories to complete the task with both modes with short inference
time. On the right, we can see failure cases of VQ-BeT and related baselines due to high error and mode collapse.

Control method Close Toaster Close Fridge Can to Toaster Can to Fridge Can to Fridge →
Close Fridge

Close Fridge
and Toaster Total

Closed loop (n = 1) 9/10 8/10 10/10 10/10 4/10 6/10 47/60
Receding horizon (n = 3) 0/5 0/5 0/5 0/5 0/5 0/5 0/30

TABLE XI: Quantitative results of running diffusion policy [9] with closed-loop vs. receding horizon control in real-world robot experiments,
where n is the number of actions executed at each timestep. We select four single-phase tasks and two two-phase tasks in which diffusion
policy does well with closed-loop control, and compare with the same policy with receding horizon control by executing multiple predicted
actions at each timestep. We see the diffusion policy with an action sequence executed per timestep goes out of distribution quite easily and
fails to complete any tasks on this set of experiments.

Ac
tio

n[
0]

Action[1] Action[1]

Decoded primary code of RVQ Decoded full code of RVQ

Fig. 8: Action centroids of primary codes and full combination of the codes. On the left, we represent centroids of the raw action data
obtained by decoding (total of 12) primary codes learned from Blockpush Multimodal dataset. On the right, we show the decoded action of
the centroids corresponding to all 144 possible combinations of full the codes. We can see that the primary codes, represented by different
colors in each figure, are responsible for clustering in the coarse range, while full-code representation provides further finer-grained clusters
with secondary codes.

0

0

0

Fin
al

 c
ov

er
ag

e

0.02 0.02

0.30
0.25

0.39

PushT

0

0

0

Fin
al

 c
ov

er
ag

e

0.02
0.01

0.02
0.01

0.10

Image PushT

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.15

3.09

3.75

3.47

3.78

Kitchen

1

2

3

Co
m

pl
et

ed
 g

oa
ls

0.64

2.41

2.00

1.59

2.60

Image Kitchen

0

1

2

Co
m

pl
et

ed
 g

oa
ls

0.00

1.68

1.14

0.92

1.72

Ant Multimodal

0

1.00

2.00

Co
m

pl
et

ed
 g

oa
ls

0.19

1.67

1.94 1.91 1.94
UR3 Multimodal

0

0.50

1.00

Su
cc

es
s r

at
e

0.01

0.87
0.93

0.88 0.87

BlockPush Multimodal

GCBC C-BeT C-BESO CFG-BESO VQ-BeT

Fig. 9: Evaluation of conditional tasks in simulation environments of VQ-BeT and related baselines. VQ-BeT achieves the best performance
in most simulation environments and comparable performance with the best baseline on BlockPush.

0

0

1

Fin
al

 C
ov

er
ag

e 0.65

0.39

0.73 0.74 0.78

PushT

0

0

1

Fin
al

 C
ov

er
ag

e

0.13

0.01

0.66

0.45

0.68

Image PushT

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.18

3.07

2.62

3.44

3.66

Kitchen

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.75

2.48

3.11
3.01 2.98

Image Kitchen

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.01

2.73

3.12

2.90

3.22

Ant

0

1

2

Co
m

pl
et

ed
 g

oa
ls

0.11

1.59

1.83 1.82 1.84

UR3 BlockPush

0

1.0

2

Co
m

pl
et

ed
 g

oa
ls

0.01

1.67

0.47

1.93
1.79

BlockPush

BC BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT (Us)

Fig. 10: Evaluation of unconditional tasks in simulation environments of VQ-BeT and related baselines. VQ-BeT achieves the best performance
in most simulation environments and comparable performance with the best baseline on BlockPush and Image Kitchen.

C. VQ-BeT with larger Residual VQ Codebook

Original codebook Extended Codebook Extended Codebook
(Vanilla VQ-BeT) (Vanilla VQ-BeT) (VQ-BeT + Deadcode Masking)

Ant Multimodal (Unconditional)

Codebook Size 10 32 32
of Code Combinations 100 1024 1024

(·/4) 3.22 3.01 3.11
p3-Entropy 4.19 4.23 4.33
p4-Entropy 4.20 4.24 4.32

Ant Multimodal (Conditional)
Codebook Size 10 48 48

of Code Combinations 100 2304 2304
(·/2) 1.72 1.75 1.81

Kitchen (Unconditional)

Codebook Size 16 64 64
of Code Combinations 256 4096 4096

(·/4) 3.66 3.75 3.7
p3-Entropy 3.42 3.01 3.10
p4-Entropy 4.07 3.57 3.74

PushT (UnConditional)
Codebook Size 16 64 64

of Code Combinations 256 4096 4096
Final Coverage 0.78 0.77 0.79
Max Coverage 0.80 0.80 0.82

Kitchen (Conditional)
Codebook Size 16 256 256

of Code Combinations 256 65536 65536
(·/4) 3.78 3.61 3.56

TABLE XII: Evaluation of conditional and unconditional tasks in simulation environments of VQ-BeT with extended size of Residual VQ
codebook.

In this section, we present additional results to evaluate the performance of VQ-BeT with larger residual VQ codebooks.
While the results of VQ-BeT across the manuscript were obtained using 8 to 16-sized codebooks, resulting in 64 to 256 code
combinations (Table XIII), here, VQ-BET was trained on codebooks with 10 to 250 times more combinations, as detailed in
Table XII. First, we evaluate VQ-BeT with extended codebook size without any modifications (‘Vanilla VQ-BeT’). Next, we
test VQ-BeT with an additional technique where the code combinations that do not appear in the dataset are masked with a
probability of zero at sampling time to eliminate the possibility of these combinations.

As shown in Table XII, we find that increasing the number of combinations (×10 ∼×250) had little impact on performance
in most environments. In environments Ant Multimodal (Conditional) and PushT (Unconditional), overall performance
slightly increased as the size of the VQ codebook increased. In environments Ant Multimodal (Unconditional) and Kitchen
(Unconditional), we see that there is a performance and entropy trade-off as the size of the codebook increases. The only
environment where the performance of VQ-BeT decreased with the extended size of the codebook was Kitchen (Conditional).
Also, we see that there is no consistent evidence on whether using masking the deadcode (code combinations that do not
appear in the dataset) is better: in Ant and PushT environments, masking led to similar or better performance, while in the
Kitchen environment, we find similar or slightly worse performance with masking.

Overall, we conclude that VQ-BeT has robust performance to the size of the codebook if it is enough to capture the
major modes in the dataset. We conjecture that this robustness is due to VQ-BeT assigning appropriate roles between primary
and secondary codes as the codebook size increases. For example, in the Kitchen (Conditional) environment where we have
increased the number of possible combinations by 256, the code prediction accuracy rate has decreased by only ×0.08 of its
original accuracy rate, while the primary code prediction retained ×0.8 of its original accuracy rate. Interestingly, Despite this
large difference, the performance difference between the two is small, around 4.5% (3.78 vs 3.61). These results suggest that
VQ-BeT could rely on the resolution of the primary code in large VQ codebook size, while using less weight on the secondary
code to handle the excessive number of code combinations, leading to robust performance to the size of the codebook.

D. Model Design Choises

Hyperparameter Kitchen Ant BlockPush UR3 PushT NuScenes Real-world
Obs window size 10 100 3 10 5 1 6

Goal window size (Conditional Task) 10 10 3 10 5 1 -
Predicted act sequence length 1 1 1 10 5 6 1

Autoregressive code pred. False False False False False True True
β (Eq. 4) 0.1 0.6 0.1 0.1 0.1 0.1 0.5

Training Epoch 1000 300 1500 300 2000 1000 600
Learning rate 5.5e-5 5.5e-5 1e-4 5.5e-5 5.5e-5 5.5e-5 3e-4

MinGPT layer num 6 6 4 6 6 6 6
MinGPT head num 6 6 4 6 6 6 6

MinGPT embed dims 120 120 72 120 120 120 120
VQ-VAE latent dims 512 512 256 512 512 512 512

VQ-VAE codebook size 16 10 8 16 16 10 8/10/16
Encoder (Image env) ResNet18 - - - ResNet18 - HPR

TABLE XIII: Hyperparameters for VQ-BeT

E. VQ-BeT for Driving Dataset

While all the other environments reported in this paper have a fixed observation dimension at one timestep, NuScenes driving
dataset, as processed in the GPT-Driver paper [32], could contain the different number of detected objects in each scene. Thus,
we make modification to the input types of VQ-BeT to train VQ-BeT with NuScenes driving dataset in response to this change
in dimensionality of the obeservation data. The tokens we pass to VQ-BeT are as shown below:

• Mission Token indicates the mission that the agent should follow: go forward / turn left / turn right
• Ego-state Token contains velocity, angular velocity, acceleration, heading speed, and steering angle.
• Trajectory History Token contains ego historical trajectories of last 2 seconds, and ego historical velocities of last 2

seconds.
• Object Tokens contains perception and prediction outputs corresponding to current position, predicted future position,

and one-hot encoded class indicator of each object. There are total of 15 classes. (‘pushable-pullable’, ‘car’, ‘pedestrian’,
‘bicycle’, ‘truck’, ‘trafficcone’, ‘motorcycle’, ‘barrier’, ‘bus’, ‘bicycle-rack’, ‘trailer’, ‘construction’, ‘debris’, ‘animal’,
‘emergency’)

MinGPT

…Mission Ego-
states

forward/ left/ right

Trajectory
History

Object 1
Slot

Object N
Slot

Order of the dist. From the agent
If num of object < N (max=51): Use zero masks

current pos (2dim)
future trajectory (2dim)
obj class (15dim one-hot)

current pos (2dim)
future trajectory (2dim)
obj class (15dim one-hot)

or torch.zeros(19)

Code Prediction
head Offset head

Trajectory Prediction

Fig. 11: Overview of VQ-BeT for autonomous driving.

	Introduction
	Background and Preliminaries
	Behavior cloning
	Behavior Transformers
	Residual Vector Quantization

	Vector-Quantized Behavior Transformers
	Sequential prediction on behavior data
	Action (chunk) discretization via Residual VQ
	Weighted update for code prediction
	Conditional and non-conditional task formulation

	Experiments
	Environments, datasets, and baselines
	Performance of behavior generated by VQ-BeT
	How well does VQ-BeT capture multimodality?
	Inference-time efficiency of VQ-BeT
	Adapting VQ-BeT for autonomous driving
	Design decisions that matter for VQ-BeT
	Adapting VQ-BeT to real-world robots

	Related Works
	Conclusion
	Appendix
	Simulated environments
	Real-world environments
	VQ-BeT with larger Residual VQ Codebook
	Model Design Choises
	VQ-BeT for Driving Dataset

