Language-Grounded Dynamic Scene Graphs for
Interactive Object Search with Mobile Manipulation

Daniel Honerkamp'*, Martin Biichner'*, Fabien Despinoy?, Tim Welschehold!, Abhinav Valada®

Abstract—To fully leverage the capabilities of mobile manipula-
tion robots, it is imperative that they are able to autonomously ex-
ecute long-horizon tasks in large unexplored environments. While
large language models (LLMs) have shown emergent reasoning
skills on arbitrary tasks, existing work primarily concentrates on
explored environments, typically focusing on either navigation or
manipulation tasks in isolation. In this work, we propose MoMa-
LLM, a novel approach that grounds language models within
structured representations derived from open-vocabulary scene
graphs, dynamically updated as the environment is explored.
We tightly interleave these representations with an object-centric
action space. Given object detections, the resulting approach is
zero-shot, open-vocabulary, and readily extendable to a spec-
trum of mobile manipulation and household robotic tasks. We
demonstrate the effectiveness of MoMa-LLM in a novel semantic
interactive search task in large realistic indoor environments. In
extensive experiments in both simulation and the real world,
we show substantially improved search efficiency compared to
conventional baselines and state-of-the-art approaches, as well
as its applicability to more abstract tasks. We make the code
publicly available at http://moma-1lm.cs.uni-freiburg.de.

I. INTRODUCTION

Interactive embodied Al tasks in large, unexplored, human-
centered environments require reasoning over long horizons
and a multitude of objects. In many cases, the considered
environments are a priori unknown or continuously rear-
ranged. Recent advancements have demonstrated the potential
of large language models (LLMs) in generating high-level
plans [19, 30, 26, 28]. However, these efforts have predomi-
nantly focused on fully observed environments such as table-
top manipulation, or a priori explored scenes, struggling to
generate executable and grounded plans suitable for real-world
robotic execution. This problem is strongly exacerbated in
large scenes with numerous objects and long time horizons. In
turn, this increases the risk of generating impractical sequences
or hallucinations [38, 1]. Furthermore, the presence of inter-
active scenes and articulated objects introduces a multitude of
potential states and failure cases.

To address these challenges, we propose grounding LLMs
in dynamically built scene graphs. Our approach incorporates
a scene understanding module that, given object detections,
constructs open-vocabulary scene graphs from dense maps
and Voronoi graphs. These diverse representations are then
tightly interweaved with an object-centric action space.

* Equal contribution.

1 Department of Computer Science, University of Freiburg, Germany.

2 Toyota Motor Europe (TME).

Supplementary material is provided at https://arxiv.org/pdf/2403.08605.pdf.

This work was funded by Toyota Motor Europe (TME) and an academic
grant from NVIDIA.

?

living room

/

go_to_and open(kitchen ,

.. obtaining milk from the fridge would
allow for a complete breakfast with cereals.

Reasoning

...
VTR

Fig. 1: MoMa-LLM performs long-horizon interactive object search in
household environments from language queries using dynamically built scene
graphs.

Leveraging the current scene representation, we extract
structured and compact textual representations of the scene
to facilitate efficient planning with pre-trained LLMs.

To evaluate the efficacy of our approach, we formulate
an interactive semantic search task, extending previous non-
semantic interactive tasks [4]] to more complex scenarios.
In this task, an agent has to find a target object within
an indoor environment, encapsulating real-world challenges
such as opening doors to navigate through the environment,
and searching inside cabinets and drawers to find the de-
sired object. This task is challenging as it requires reasoning
about manipulation and navigation skills, operating in unex-
plored environments, spanning large apartments with numer-
ous rooms and objects. Consequently, it is representative of
more complex mobile manipulation tasks while retaining the
specificity required for thorough evaluations and comparisons
against conventional methods. Furthermore, we introduce a
novel evaluation paradigm for object search tasks, employing

http://moma-llm.cs.uni-freiburg.de
https://arxiv.org/pdf/2403.08605.pdf

full efficiency curves to remove the dependency on arbitrary
time budgets inherent in existing methods. Additionally, we
propose the AUC-E metric to distill these curves into a
single metric for coherent evaluation. We perform extensive
experimental evaluations in both simulation and the real-world,
and demonstrate that given appropriately structured representa-
tions, LLMs can leverage their accumulated knowledge about
the human world to achieve exceptional results, outperforming
state-of-the-art approaches across diverse fields. Our approach
is zero-shot, with open-vocabulary reasoning, and inherently
scalable to various mobile manipulation and household robotic
tasks, as we demonstrate on a set of abstract search tasks.
To summarize, our main contributions are
o A scalable scene representation centered around a dy-
namic scene graph with open-vocabulary room clustering
and classification.
o Structured compact knowledge extraction to ground
LLMs in scene graphs for large unexplored environments.
« Semantic interactive search task for large scenes with
numerous objects and receptacles.
« Novel evaluation paradigm for object search tasks through
full efficiency curves, instead of a single time budget.
o We release the code at http://moma-Illm.cs.uni-freiburg.
de.

II. RELATED WORK

3D Scene Graphs serve as sparse environment representations
that abstract from dense semantic [1] or panoptic maps [45].
The disassembly of large scenes into objects, regions, etc., and
their representation as nodes thus provides hierarchical and
object-centric representations. In addition, nodes and edges
may contain semantic attributes [20, 4, R]. Despite
the lower geometric fidelity compared to dense maps, scene
graphs prove particularly successful in the realm of high-level
reasoning and planning, while providing a powerful interface
with mapping [12, 38]. Orthogonally, Hydra [20] focuses on
representing dynamically changing scenes. Multiple works
have explored the use of scene graphs for reasoning in mobile
robotics. Most build a hierarchical scene graph of the form
(building, floors, rooms, objects). Different variants add edges
among objects [14], add a Voronoi graph [47] for storing
observations, or separate the set of objects into static and po-
tentially moving objects [36]. While ConceptGraphs [14] and
VoroNav [47] investigate the use of zero-shot perception inputs
for task planning, others such as SayPlan [38], SayNav [36],
and Taskography [!] focus on the reasoning task itself by
utilizing ground truth semantic scene graphs [34, 5]. Realizing
object navigation using both dynamic and interactive scene
graphs has not been tackled thus far in the aforementioned
works.

Language Models for Planning: Several recent works have
investigated language models’ abilities to generate task plans
for robotic manipulation. These largely focus either on static
table-top scenes of limited size and a limited number of
objects [19, 26, 28], or a fully observable scene. On the other
side of the spectrum, vision-language-navigation investigates

pure navigation tasks in large apartments to either navigate
along a described path or towards a specific instance of an
object [13, 43]. A smaller number of works have investigated
apartment-wide mobile manipulation tasks. LLM-Planner [43]
uses information retrieval of the closest matching known task.
Chalvatzaki et al. [5] finetune an LLM to encode object-
object relations extracted from a scene graph. SayCan [2]]
combines affordance values with language scores. However,
all of these methods focus on tasks restricted to single rooms.
SayPlan [38] focuses on identifying relevant subgraphs in large
known scene graphs by iteratively extracting or collapsing
nodes. Ni ef al. [34] learn a transformer-based model on top
of a frozen LLM to predict subtasks from fully known scene
graphs. In contrast, we focus on interactive search in large
fully unexplored environments. As a result, simple prompting
strategies, such as lists of observed objects [43, 14, 34] or raw
JSON input [38] of a full scene graph to a language model
becomes insufficient, as we demonstrate in our experiments.

Object Search has been tackled via a wide range of methods,
including classical methods such as frontier exploration [49],
vision-based reinforcement learning [0], or auditory sig-
nals [52]. Graph Neural networks (GNNs) have been used with
scene graphs to find specific object instances with hierarchical
and relational constraints [29] or in frequently changing,
dynamic scenes [24, 50]. Schmalstieg ef al. [41] introduced
the interactive search task, in which an agent has to open doors
and search through cabinets and drawers. While they focus on
random target placements and a restricted number of objects
and receptacles, we introduce a semantic single-object search
variation of this task, which uses all objects in the scene and
keeps the semantic co-occurrences in the scene intact.
Non-interactive semantic search has been previously
tackled. Most recent methods used language models to extract
similarities or co-occurrences with the target object to score
frontiers [53, 8, 51] or predict potential functions towards
a target object with supervised learning [37]. While these
works focus on pairwise score calculations, we treat it as a
planning problem in which the full scene is encoded jointly.
In contrast to these works, we consider objects that are not
freely accessible and require interaction with the environment
and thereby reasoning over multiple steps such as opening
doors and receptacles instead of pure directional reasoning.
Lastly, given object detections, our representation and
reasoning is fully open-vocabulary - both in terms of room
and object categories. Conceptually most similar to our work,
SayNav [36] utilizes a scene graph together with an LLM.
However, it focuses on non-interactive search, restricting the
LLM’s access to a room subgraph, assumes restrictions such as
knowledge about scene graph edges, and relies on a hardcoded
heuristic of when to go to the next (already open) door.

III. PROBLEM STATEMENT: EMBODIED REASONING

In our setting, an embodied, robotic agent is situated in a
large, unexplored environment and has to complete a given
task, described by a language goal g. The agent is acting in
a Partially Observable Markov Decision Process (POMDP)

http://moma-llm.cs.uni-freiburg.de
http://moma-llm.cs.uni-freiburg.de

[Perception] [Hierarchical Scene Graph Construction]
s \

I High-Level Policy I

Room
Classification

¢

Scene
Graph

] J

Semantics V

L]

o Yok
e

Localization
L J

Low-Level Policies

go_to_and_open(room, object)
ety) | I
o) | .

close(room, object)

done()

Fig. 2: MoMa-LLM: From posed RGB-D images and semantics, we construct a semantic 3D map from which we extract a various occupancy maps in the
BEV space and construct a navigational Voronoi graph. Through room clustering and room-object assigments we then build up a hierarchical scene graph.
From this scalable scene representation, we extract the task-relevant knowledge and encode it into a structured language representation. A large language
model then produces high-level commands which are executed by low-level subpolicies. These in turn draw on and update the scene representations.

M = (§,A,0,T(s'|s,a), P(o]s),r(s,a)) where S, A and
O are the state, action and observation spaces, 7" and P
describe the transition and observation probabilities, s, s
are the underlying current and next state, o is the agent’s
current observation consisting of posed RGB-D frame I;, a
is the current action and r is the reward. To succeed in these
tasks, the agent has to perceive the environment and create a
representation while reasoning about how to complete the tasks
through exploration and interaction with the environment.

We introduce the task of semantic interactive object search.
In contrast to most existing works [6, 53, 8, 40], interactive
object search requires manipulation of the environment to
navigate and explore it. As in realistic, human-centric environ-
ments, doors may block pathways and objects are not openly
visible but may be stored away in receptacles like drawers
or cabinets. We extend the interactive task introduced in [41]
to a much larger number of objects and receptacles and a
prior distribution of realistic room-object and object-object
relations. As a result, other objects in the scene can provide
valuable information about the position of the target. While
existing tasks such as the Habitat challenge and Robothor
use semantic placements, they do not support any physical
interactions or objects placed within receptacles.

We implement the task in the iGibson scenes [27], con-
sisting of 15 interactive apartments based on scans of real
houses. At the beginning of an episode, all doors are closed
and the agent is given a task description in natural language.
The task is deemed successful if the agent has observed an
instance of the target category and calls done(). The iGibson
scenes contain realistic furniture and room distributions, but
few other objects are placed in relation to this. We enrich the
scenes with realistic object placements, both within receptacles
and on top of furniture, by extending and matching previously
introduced prior distributions PP"°" over room and object
relations [24], by aligning room names manually and matching
object names via SBERT cosine similarities. We then assume
that all objects that can be found on top of an object and that
fit in size, can also be found inside it and vice-versa.. Given

a valid scene instantiation, we then draw a target category
g ~ U(scene) from all categories in the scene. This results
in the procedural generation of a wide range of tasks over
84 possible target classes. Full details can be found in the
Supplementary Sec. S.1.

IV. MoMA-LLM

To address the challenges of interactive open-vocabulary
household tasks, we propose MoMa-LLM, which intertwines
high-level reasoning with scalable dynamic scene representa-
tions. We ground large-language models in hierarchical 3D
scene graphs Gg that hold object- and room-level entities as
well as a more fine-grained Voronoi graph for navigation. The
LLM provides high-level actions that are executed through
low-level skills as shown in Fig. 2. In general, we assume
access to ground truth perception for semantic masks, depth,
localization and handle detection as the focus of this work is
on the reasoning aspect.

A. Hierarchical 3D Scene Graph

To provide an LLM with structured input, we craft a hierar-
chical scene graph that includes a navigational Voronoi graph.

1) Dynamic RGB-D Mapping: The agent perceives posed
RGB-D frames {Iy,...,[;} including semantics from the
environment. The contained points are transformed into the
global coordinate frame and arranged on a 3D voxel grid M.
As we tackle an interactive problem, our map is dynamically
updated based on novel explored areas or the occurrence of
object dynamics in the scene. To infer obstacle positions, walls
and explored free space, we first obtain the highest occupied
entry per stixel in M;. These entries are then turned into a
two-dimensional bird’s-eye-view (BEV) occupancy map 5; by
inferring all occupied positions except for those classified as
free space F;. The latter in turn represents the navigable area
that is used for robot exploration.

2) Voronoi Graph: Similar to Hydra [20], we abstract from
the created dense maps by computing a navigational graph Gy,.
We first inflate ; using an Euclidean signed distance field

(ESDF) formulation for robustness, but overwrite free space
coordinates as given in J; as zero. Based on this, we compute
a Generalized Voronoi Diagram (GVD) that holds a set of
points V with the same clearance to the closest obstacles:

V = {p e Fi|{q € B|d(q,p) = mingeg, d(¢,p}}, (1)

where obstacle points ¢ are drawn from ;. After obtaining
V, we exclude all nodes that lie in the immediate vicinity of
obstacles or do not reside within the occupied map boundaries.
Given the path of obtained medial axes, we then construct
edges £ among V and obtain our navigational Voronoi graph
Gy = (V,€&). Throughout our experiments, we found that
extracting the largest connected component of the graph pro-
vides the robot-centric Voronoi graph while other components
commonly lie outside the explored area. Lastly, we sparsify
Gy to obtain fewer navigational nodes.

3) 3D Scene Graph: The MoMa-LLM-policy operates on
an attributed 3D scene graph Gg that holds different abstraction
levels, namely rooms and objects. We first separate the global
Voronoi graph Gy, into multiple regions. To do so, we eliminate
edges and nodes of GGy, near doors instead of separating graphs
at geometrical constrictions [20]. Using a mixture of Gaus-
sians, we generate a two-dimensional probability distribution
over all observed doors in the environment:

1 &
pN(:B,H):NiD;KH(x_wi)v)
where x; = (x;,y;) are the door center coordinates, Ky

is the scaled Gaussian kernel of observed doors and H the
bandwidth matrix, which we set to 2.0 based on manual
tuning on the training scenes. Edges that exceed an empirically
tuned probability threshold are disregarded along with iso-
lated nodes. Following this principle, we obtain the separated
Voronoi graph G{f covering distinct rooms. In the next step, we
infer the high-level connectivity among rooms by calculating
the shortest paths between nodes of Gy, that belong to disjoint
components of Q{}. Whenever a path traverses just two distinct
rooms as given by g{}, the two rooms count as immediate
neighbors. Finally, we map objects to rooms. For each object
0 € Gg, we identify the node that minimizes the distance d,,
to the closest viewpoint v, from which the object was seen. To
this end, we calculate the shortest path from the object o to this
viewpoint. It consists of the path on the Voronoi graph Gy, and
the Euclidean distances d from the Voronoi nodes n, and Ny,
to the object o and viewpoint v, respectively. By weighting
the distance to the object with an exponent of A = 1.3, we
ensure to prefer nodes close to the object. Objects are then
assigned to the room label R of the node n, that minimizes
Eq. (3). This prohibits the erroneous assignments of objects to
a neighboring room through walls. Doors may be connected
to multiple rooms.

dvo =

min
TosMu, €GH

path(ne, ny,) + d(o, no)’\ +d(vp,ny,) (3)

system: You are a helpful assistant, visiting a new apartment.

user: You observe 2 rooms, they contain the following objects:
- room-0 contains [4 armchairs, cl bot n

inet,

carpet,

, picture, 4 table-lamp,

pene ndow

- room-1 contains , document,
2 closed doors, 2 W

Please classify the rooms. If you are unsure, classify them as other room.

Output Response Format: A list with bullet points of the form

- room-X: room type

assistant: The first room seems to be a living room, and the
second room appears to be a bedroom.

Output Response Format:

- room-0: living room

- room-1: bedroom

Fig. 3: Room Classification Prompt: based on the objects and room clusters
of the scene graph, an LLM performs open-vocabulary classification.

4) Room Classification: Similar to Chen et al. [9], we
perform room classification by providing an LLM with the set
of object categories contained in each room. We perform this
as open-set classification, in which we let the LLM freely pick
the room categories deemed most appropriate. The resulting
LLM prompts are detailed in Fig. 3. Room classification is
performed in each high-level policy step, as the explored scene
and scene graph evolve.

We provide a concise overview of all scene graph layers in
Tab. S.1.

B. High-Level Action Space

We design an object-centric action space, which is tightly
intertwined with the different granularities of the scene repre-
sentation. It consists of the following high-level actions:

navigate(room_name, object_name): Navigation to an
object in a room via an A* planner in the explored BEV-map
B;, inflated by 0.1m. It first navigates to the Voronoi node
associated with the object, then to the most central, free point
on an arc around the object. This enables robust navigation to
objects in partially explored space and ensures navigation to
the correct room through the Voronoi assignment detailed in
Sec. IV-A3. Navigation is considered successful if the agent
reaches within 1.5m of the object.
go_to_and_open(room_name, object_name): Navigate to
a specific object, then open it. For doors, continue to navigate
into the opened door frame.

close(room_name, object_name): Equivalent to opening.
explore(room_name): Move to an unexplored frontier within
this room. Deemed successful if within 0.5m of the frontier.
done(): Terminate the episode and evaluate if the target object
has been found.

Ambiguities of multiple instances of the specified class in a
room are resolved by selecting the closest instance. The sub-
policies then generate actions in the low-level action space and
return once they succeed or encounter a failure. Throughout
their execution, they continuously update the scene represen-
tations. Refer to the Supplementary Sec. S.1 for details.

C. Grounded High-Level Planning

We encode the accumulated knowledge of the scene graph
into natural language by extracting the relevant components
and embedding them in a problem-specific structured manner.
Our method fulfills three properties: (i) grounding - guiding the
LLM to adhere to the physical realities of the scene, (ii) speci-
ficity - avoiding long or irrelevant context queries that increase
hallucinations and the difficulty of the planning problem [38,

], and (iii) open-set - our reasoning is open-vocabulary and
performs in a zero-shot manner, enabling direct deployment
with unknown semantics and perception models. The resulting
prompt for the language model is shown in Fig. 4. In the fol-
lowing, we describe the main components of structured encod-
ing. We demonstrate the importance of this structure in Sec. V.

1) Scene Structure: We encode the main room-object struc-
ture from the scene graph into a structured list of rooms
and their containing objects and encode path distances (based
on an A*-planner) by binning them and mapping them to
adjectives [5], as detailed in Supplementary Sec. S.4. We
then employ the following filtering to allow for compact
text encodings: we summarize matching nodes within a room
with a counter, we filter out open doors that provide no new
connectivity, and we encode object states directly within the
object name, e.g. as “opened” or “closed [object-name]” .

2) Partial Observability: As the environment is initially
unknown, it requires explicit reasoning about exploration-
exploitation trade-offs. We identify frontiers to explorable
areas [49], then leverage the scene graph to provide them with
semantic meaning. Firstly, we associate each frontier with a
room through matching with G{f. Secondly, we apply hole-
filling to the BEV map to differentiate whether a frontier
is an encapsulated area within a room, such as occluded
space behind furniture, or whether the frontier is leading out
to new areas. Correspondingly, we then represent them as
“unexplored area” within a room, while frontiers that lead
to other areas are listed separately, see Fig. 4. The second
type of unexplored space is receptacles that may contain target
objects. Together with the encoded object states, we find that
the language model is capable of inferring affordances from
the object descriptions, removing the need to explicitly encode
them. If trying to open objects that cannot be opened, the
according subpolicy will fail and the LLM has to reason about
an appropriate response.

3) History in Dynamic Scenes: Given the size of the
scenes, the conversation history quickly grows too large to
provide to a language model directly. Instead, we aim to find
the most compact representation of previous actions to fulfill
the Markov property. For each high-level decision, we encode
the latest scene representation and start a new query to the
LLM. As the scene representation is dynamically updated,
this automatically encodes all newly acquired knowledge. To
account for previous interactions, we provide the LLM with a
history of the last h actions. But as the scene graph changes
dynamically, the previous room- and object-centric function

calls may no longer match the current scene. Instead, we keep
track of interaction positions, and then re-align the previous
actions by matching the positions to their closest Voronoi
nodes and associated room labels. We then provide the LLM
with a list of the re-aligned function calls, as shown in Fig. 4.
E.g., the agent executes go_to_and open(living room,
cabinet). But revealing a fridge, later classifies the same
room as kitchen. The realigned history will then correctly
reflect this action as go_to_and_open(kitchen, cabinet).

4) Re-trial and Re-planning: Extracting meaningful feed-
back for failure reasons for robots in the real world remains an
open problem [30], as the number of possible failure reasons is
almost unlimited. Instead, we provide very limited feedback
about subpolicy success, which can be readily generated in
the real world. We rely on a simple success state to the action
history, stating “success”, “failure”, or "invalid argument” in
case the output of the LLM could not be matched to the scene
graph. We differentiate two cases of replanning: if the agent
attempted interactions or commands that cannot be parsed
or are deemed infeasible without attempting execution, we
have not gained any new information about the scene, and we
continue the conversation with the message “The last action
<function-call> failed. Please try another command.”. In case
of more than five failures without state change, we terminate
the episode as unsuccessful. If a subpolicy attempted execution
but failed to complete its task, we re-encode the latest scene,
update the action history, and let the LLM make a normal next
decision with the updated state.

V. EXPERIMENTS

As language models, we use gpt-4-1106-preview for the
high-level reasoning and gpt-3.5-turbo-1106 for the room
classification task [35]. For simplicity, we recompute the scene
graph each time-step. More advanced implementations would
reduce costs through incremental updates.

Baselines: We compare our approach against heuristic-based
and recent learning-based and language-based methods. We
provide all baselines except Unstructured LLM with a ground
truth done() decision when the object has been observed.
Random: uniform random choice among all available actions
(detected frontiers and closed objects).

Greedy: greedily triggers the closest available action based on
the shortest path calculated by an A*-planner.
ESC-Interactive: ESC is a recent approach for semantic object
search [53] which scores frontiers based on object-object
and object-room co-occurrences as well as their distance. We
extend the approach to interactive search by using the same
rules to score openable objects and then select the action with
the highest value. Co-occurrences are based on similarities of
a finetuned Deberta-v3 language model [17], following the
authors’ instructions. To isolate the impact of the decision
making, we use the same scene graph and low-level policies
as for our method.

HIMOS: A hierarchical reinforcement learning approach [41]

system: You are a robot in an unexplored house. Your task is to find a stove.
You have the following actions available that you can use to achieve this task:
1. navigate(room name, object name): navigate to this object in this room.

3. close(room name, object name): close this articulated object, door or container.

4. explore(room_name) : explore the unknown space near one of the rooms that is not fully explored yet.

2. go_to_and open(room name, object name): go to this articulated object, door or container and open it.‘l
5. done(): call when the task is completed or if you are unable to take any further actions. J

Output Response Format:

Analysis: describe where you could find the objects of interest and what actions you need to execute to get there. 1

Reasoning: justify why the next action is important to solve the task.
Command: function call

user: You are currently in the living room. You are standing next to the following objects: [bottom-cabinet, carpet, coffee-table, console-table,
picture, plate, sofa]. Furthermore, you have found the following rooms and objects in the house so far:

- bathroom-1:
- bathroom-2:

[mirror, shower, sink, toilet, towel-rack, wine-bottle]

- bedroom: [alarm, 2 balls, bed, 2 closed bottom-cabinets, candle, carpet, 2 console-tables, notebook, pencil, pencil-box, picture, pot-plant, sofa,
straight-chair, swivel-chair, 4 tables, 3 table-lamps, 5 closed windows, opened window]

- living room: [armchair, closed bottom-cabinet, 2 carpets, coffee-table, console-table, floor-lamp, grandfather-clock, light-bulb, mirror, notebook,
4 pictures, plate, pot-plant, sofa, table, 2 opened windows, closed window, unexplored areal]

- other room: []

success, explore(living room) - success.
These rooms have unexplored space leading out of the room: [living room (near)].

Your 5 previous actions were: explore(living room) - success, explore(bathroom-2) - success, explore(living room) - success, explore(living room) - }-J

These rooms contain closed doors that might open up new space: [].

What is the best next action to complete the task as efficiently as possible? I you don't think that the object can be found in a known room,

prioritize opening doors over exploring a room.
Remember:
1. Respond with a function call

[candle, mirror, picture, sink, soap, toilet, towel-rack, unexplored area]

if:fe

-

Scene
Structure

=
=S

. You can only use the objects and rooms that you have already found. Object names have to match the description exactly.

. If you have found the object you are looking for, directly call done(). You do not need to navigate to it or interact with it.

2
3. You can only explore rooms that are listed as having unexplored space
4
5

. If some actions failed repeatedly, they may not be possible.

assistant: Analysis: The stove is typically located in the kitchen, which has not been listed among the discovered rooms so far. Since the living
room has an unexplored area, it is possible that this area could lead to the kitchen or another room that might contain the stove. Prioritizing the
exploration of unexplored areas over opening doors is the most efficient way to find new rooms, as it may reveal the kitchen or a path leading to

it.

Reasoning: Exploring the unexplored area in the living room is the next logical step because it could reveal new rooms or areas, such as the
kitchen, where a stove is likely to be found. Since the task is to find a stove and the current known rooms do not contain one, exploring is the

best option to potentially discover the kitchen.
Command: explore("living room")

Fig. 4: High-level Reasoning Prompt: We encode the extracted scene representation to natural language, providing structured information to a language model.

which learns to combine frozen low-level policies for interac-
tive object search, based on a semantic map memory. We adapt
it by giving it the same subpolicies as our approach and scale it
to the much larger number of objects in our scenes by restrict-
ing the instance navigation to target and articulated objects.
Unstructured LLM: This baseline provides the scene graph in a
JSON format without any additional structure to the language
model. The prompt structure is derived from SayPlan [38],
adapted to the instructions and scene graph of our method.
See Supplementary Sec. S.5 for a prompt example.
MoMa-LLM w/ Hydra: We incorporate the room segmentation
approach introduced by Hydra [20] into our scene graph
construction pipeline to measure the impact of our proposed
door-wise room separation mechanism.

Metrics: We use three types of metrics to evaluate methods.
Success rate (SR): the share of episodes in which the agent
finds the target object. We terminate an episode if the agent
reaches 50 high-level steps, indicating being stuck.

Success weighted by Path Length (SPL) [2] calculates the
fraction of distance traveled to the shortest possible path and
weights it by whether the episode was successful. This metric
does not take into account the costs of object interactions.
Search efficiency curve and AUC-E: While the commonly used
success and SPL metrics allow for reducing the evaluation
to a single number, they rely on an arbitrarily set maximum
allowed time budget or number of environment steps. As a
result, these metrics do not differentiate between methods
that search thoroughly but on average take more steps versus

methods that search large areas very quickly, but that might fail
to search every corner for small objects. Instead, we reason that
the desired time budget depends heavily on the use case and
propose a new metric that evaluates the full efficiency curve.
For each possible budget (number of steps), we calculate the
share of episodes that succeeded with this or fewer number
of steps. This results in an efficiency curve, in which the
best policies are located in the top left corner, enabling the
comparison of success rates for arbitrary budgets. We can still
reduce this to a single number by calculating the area under
the efficiency curve (AUC-E). A perfect (but unachievable)
policy, that finds all objects in a single step will have a value
of one, a policy that does not find any objects will have a value
of zero. We calculate the integral up to 5,000 low-level steps,
at which points almost all methods make no further progress.

A. Simulation Experiments

We instantiate the task in the iGibson simulator [27] with a
Fetch robot. In contrast to previous LLM-based works [38, 36],
we evaluate all approaches in completely unseen apartments,
following the data split of the iGibson challenge into eight
training scenes for the development of all modules and prompt
engineering and seven test scenes. For each scene, we eval-
uate the agent over 25 procedurally generated episodes with
randomized start poses, target objects, and object distributions.

Scene Understanding: We compare our door-based room
separation algorithm against Hydra [20], which separates a

TABLE I: INTERACTIVE OBJECT SEARCH RESULTS IN SIMULATION

TABLE II: ENVIRONMENT PARTITIONING THROUGHOUT EXPLORATION

Object Distance Infeasible

Model ‘ SR SPL - AUCE Interactions Traveled Actions
Random 93.1 502 770 5.7 329 -
Greedy 85.7 509 72.9 8.1 223 -
ESC-Interactive 954 627 84.5 4.1 19.6 -
HIMOS 93.7 485 774 4.8 359 -
Unstructured LLM 863 594 77.6 3.6 18.5 0.41
MoMa-LLM w/ Hydra | 92.0 61.9 84.3 2.7 129 0.06
MoMa-LLM (ours) 97.7 63.6 87.2 3.9 18.2 0.19
Ours w/o frontiers 794 550 722 43 15.6 0.91
Ours w/o history 949 630 84.1 3.6 17.1 0.26
Ours w/ room-history | 97.1 63.0 86.6 3.8 17.8 0.28
Ours w/o distances 97.1 615 86.4 3.8 18.9 0.24

Notes: Best and second best highlighted in bold and underline. Object inter-
actions, distance travelled and infeasible actions averaged over all episodes
- including early terminated failures. Infeasible Actions: average number of
steps the LLM produced an action that could not be executed, resulting in
re-planning with continued conversation (cf. Sec. IV-C.4).

1 T T T T
0.8 = B
206} -
&
P ——— MoMa-LLM (ours)
§ 04l Unstructured LLM
@ —— HIMOS
—— ESC-Interactive
0.2 Random |
/ Greedy
0 | | T T
0 2k 4k 6k 8k 10k

Environment Steps

Fig. 5: Interactive search efficiency curve in simulation. Each point depicts
the success rate for a given maximum time budget (x-axis).

Voronoi graph of places based on dilating obstacles. We
evaluate the room segmentation precision and recall as de-
fined by Hughes e al. [20] and the separated Voronoi graph
purity at all high-level policy steps to account for robustness
throughout exploration. As depicted in Tab. II, we observe
greater average precision and recall of MoMa-LLM in terms
of dense region segmentation as well as a lower variance
across time. The sparsely evaluated graph purity shows that
the separated Voronoi graphs of MoMa-LLM cover fewer
ground-truth rooms per predicted room than graphs produced
by Hydra, which may produce inferior results when facing
non-apparent constrictions or object clutter. We found that
real-world scenes, as the ones contained in iGibson, regularly
feature constant-diameter corridors and narrow passages due
to furniture placements, which impede detecting rooms based
on geometrical constrictions. This demonstrates that room sep-
aration algorithms benefit from semantic cues such as detected
doors, door frames, archways, or changing floor materials at
room boundaries. We found our policy to be robust to under-
segmented rooms even though objects from multiple rooms
were, e.g., considered part of a single room. By relying on
the camera pose from which an object is observed we reduce

Precision Recall

Approach ‘ ut ol ot ol Purity 1
Hydra 0.621 0.081 0.943 0.044 0.562
MoMa-LLM| 0.666 0.064 0.948 0.032 0.615

Dense room segmentation precision and recall as defined in Hughes et
al. [20] in terms of mean and standard deviation throughout exploration. The
purity (Supplementary Sec. S.6.1.A) measures the number of ground-truth
rooms erroneously captured per predicted room given sparse Voronoi graphs.
Evaluated across 10 episodes and all test scenes with 2D grid resolution of
0.05m to account for thin walls. Best values are written bold.

the number of wrong object-room assignments through walls.
Following the door-wise separation of rooms, our approach
however is prone to open room concepts such as combined
kitchen and living rooms. For more information and graph
depictions, refer to the Supplementary Sec. S.1.

Policies: The results and efficiency curves for the search task
are shown in Tab. I and Fig. 5. We find that, given appropriate
subpolicies, heuristics can complete a significant share of
episodes. However, they are not sufficient for an efficient
search strategy, resulting in low SPL and AUC-E. Similarly,
while HIMOS achieves a high success rate, it is unable to
explore efficiently. We found that the RL agent struggled with
the much larger action space that resulted from the many
more interactable instances in our scenes than in the original
work. ESC in contrast, is able to exploit the co-occurrences
to improve over the other baselines. However, given its pair-
wise comparisons, it is unable to optimize over longer action
sequences. In contrast, MoMa-LLM achieves similar success
rates as HIMOS with a much higher search efficiency, both in
terms of SPL and AUC-E. We find that the structured prompt
representation is essential for this, with the Unstructured
LLM performing much worse. We then perform an additional
number of ablations of the language encodings. We find that
encoding the frontiers is very important. Removing the history
also leads to a, although smaller, drop in performance. Even
a coarser representation of the history, consisting of only a
list of visited rooms similar to [38], is already beneficial, but
slightly worse than the full action history. Lastly, we evaluate
the impact of not encoding distances nor nearby objects and
also find a small drop in performance.

This picture is fortified by the full efficiency curves in Fig. 5,
which show that the MoMa-LLM-based approaches achieve
the highest performance for all given time budgets, with only
MoMa-LLM w/ Hydra being more efficient for some of the
small budgets, but not overall. In contrast, random heuristics
achieve very high coverage, resulting in good success rates, but
often take very long to find specific objects. Further examining
the different models, we find that MoMa-LLM both travel
much shorter distances and open fewer objects on average,
indicating efficient and target-driven behavior. In contrast,
Unstructured LLM produces almost 50% more invalid actions.
Qualitatively, we find that MoMa-LLM is robust to various
room layouts, such as “combined kitchen and living rooms”

TABLE III: INTERACTIVE OBJECT SEARCH RESULTS IN THE REAL WORLD

Model Success Navig Manip Distance Object
ode Rate Fails Fails Traveled Interact.

ESC-Inter. 80% 2 0 339 35

MoMa-LLM 80% 1 1 17.9 2.2

Notes: Dist. travelled is the average distance travelled per episode in meters.
Object interactions are the average number of object interactions per episode.

that result in very large room clusterings and can handle the
open-vocabulary room classification well. In contrast, Hydra
tends to predict a large number of small rooms. For reasoning
examples, refer to the Supplementary Sec. S.6.

B. Real-World Experiments

We then transfer our policy to the real world. We create a
real-world apartment, consisting of four rooms: a combined
kitchen and dining room, a living room, a long h allway, and
a bathroom. We use a Toyota HSR robot, equipped with an
RGB-D camera and a 270° LiDAR. We replace the navigation
policies with the ROS Nav Stack and the manipulation actions
with the N?2M? manipulation policies [18]. We rely on the
same assumptions as in simulation and assume access to lo-
calization, accurate semantic perception, and handle detection.
We implement this by pre-recording a map with the robot’s
LiDAR and annotating it with semantic labels. At test time,
we create an occupancy map from the robot’s RGBD camera
and reveal the corresponding part of the semantic map to the
agent. The pre-recorded map is also used for localization. To
detect handles, we use AR-Markers placed on each object. For
details refer to the Supplementary Sec. S.2.

We evaluate both MoMa-LLM and the most efficient
baseline, ESC, on identical start positions and target
categories. The results are shown in Tab. III, Fig. 6, and
the accompanying video. Both methods succeeded in 8/10
episodes, demonstrating the successful transfer of the system
to the real world. We find that the Voronoi- and scene graph
construction transfer directly to the unseen and quite different
layout. Similarly, the system directly transfers to the change
in subpolicies, where the mobile manipulation policies ensure
a the transition between all subpolicies. The two failures
stemmed from irrecoverable failures of the subpolicies, in
particular, collisions of the base during navigation or of the
arm while opening the door. Comparing the methods, we
find confirmation of the simulation results, with MoMa-LLM
moving and opening objects more target-driven and efficiently.
Furthermore, the agent was able to react to the (unseen)
failure cases of the subpolicies, such as re-trying to open a
drawer when the gripper slipped off the handle.

C. Towards General Household Tasks

As we move to more abstract and complex tasks, it becomes
increasingly difficult to define problem-specific rules or heuris-
tics. In contrast, our approach is readily expandable to a wide

bathroom

door ¥

hallway

coathanger

cabinet picnic blanket
shelf

| shoes

fan

cabinet
clock g
plate

lemon
)

orange

chair

glass

table

chair
cabinet

kitchen

cereals

frying pan

-
oven [ridge olive oil coffee

Fig. 6: We construct a real-world apartment covering four rooms and 54
objects and transfer the model to a Toyota HSR robot.

range of household and mobile manipulation tasks. Represen-
tative of this, we introduce a fuzzy search task. In this task, the
robot does not receive a specific object class to find, but rather
a fuzzy description, such as I am hungry. Find me something
for breakfast”. The full set of queries are shown in Tab. S.4.
We find that the agent is capable of finding objects that satisfy
respective queries, and correctly reasoning about task comple-
tion by calling done(). We further test this capability with three
tasks that cannot be solved with the given subpolicies (bottom
part of Tab. S.4). For these cases, the agent terminated the
episode after finding the relevant objects, reasoning that these
objects would now be sufficient for further completion of the
tasks. This demonstrates the flexibility of our approach. We
leave the extension to arbitrary tasks to future work.

VI. CONCLUSION

We developed a method to ground language models for
high-level reasoning with scalable, dynamic scene graphs
and efficient low-level policies for interactive tasks that re-
quire combined reasoning about manipulation, navigation and
exploration. We demonstrated the importance of extracting
structured knowledge for large and unexplored scenes to
enable LLMs to reason about efficient search strategies,
outperforming fully learned or co-occurrence-based methods.
We then transferred our method to a real-world apartment,
achieving consistent performance over many episodes. Lastly,
we demonstrate the extendability of our approach to abstract
tasks, opening the door towards general household tasks.

REFERENCES

[1] Christopher Agia, Krishna Murthy Jatavallabhula, Mo-
hamed Khodeir, Ondrej Miksik, Vibhav Vineet, et al.
Taskography: Evaluating robot task planning over large
3d scene graphs. In Proc. of the Conf. on Rob. Learning,
pages 46-58, 2022.

[2] Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, et al. On evaluation of embodied
navigation agents. arXiv preprint arXiv:1807.06757, 2018.

[3] Miguel Arduengo, Carme Torras, and Luis Sentis. Robust
and adaptive door operation with a mobile robot. Intelli-
gent Service Robotics, 14(3):409-425, 2021.

[4] Iro Armeni, Zhi-Yang He, Amir Zamir, Junyoung Gwak,
Jitendra Malik, Martin Fischer, and Silvio Savarese. 3D
scene graph: A structure for unified semantics, 3D space,
and camera. In Int. Conf. on Computer Vision, 2019.

[5] Georgia Chalvatzaki, Ali Younes, Daljeet Nandha,
An Thai Le, Leonardo FR Ribeiro, and Iryna Gurevych.
Learning to reason over scene graphs: a case study of
finetuning gpt-2 into a robot language model for grounded
task planning. Frontiers in Robotics and Al, 10, 2023.

[6] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning to
explore using active neural slam. In Int. Conf. on Learn.
Repr., 2020.

[71 Arnav Chavan, Raghav Magazine, Shubham Kushwaha,
Meérouane Debbah, and Deepak Gupta. Faster and lighter
Ilms: A survey on current challenges and way forward.
arXiv preprint arXiv:2402.01799, 2024.

[8] Junting Chen, Guohao Li, Suryansh Kumar, Bernard
Ghanem, and Fisher Yu. How to not train your dragon:
Training-free embodied object goal navigation with se-
mantic frontiers. Robotics: Science and Systems, 2023.

[9] William Chen, Siyi Hu, Rajat Talak, and Luca Carlone.
Leveraging large language models for robot 3d scene
understanding. arXiv preprint arXiv:2209.05629, 2022.

[10] Bowen Cheng, Ishan Misra, Alexander G. Schwing,
Alexander Kirillov, and Rohit Girdhar. Masked-attention
mask transformer for universal image segmentation.
Proc. of the IEEE Conf. on Comp. Vision and Pattern
Recognition, 2022.

[11] Nikhil Gosala, Kiirsat Petek, Paulo LJ Drews-Jr,
Wolfram Burgard, and Abhinav Valada. Skyeye:
Self-supervised bird’s-eye-view semantic mapping using
monocular frontal view images. In Proc. of the IEEE
Conf. on Comp. Vision and Pattern Recognition, pages
14901-14910, 2023.

[12] Elias Greve, Martin Biichner, Niclas Vodisch, Wolfram
Burgard, and Abhinav Valada. Collaborative dynamic 3d
scene graphs for automated driving. Int. Conf. on Robotics
& Automation, 2024.

[13] Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and Xin
Wang. Vision-and-language navigation: A survey of tasks,
methods, and future directions. In Proc. of the Assoc. for

Computational Linguistics, pages 7606-7623, 2022.

[14] Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Kr-
ishna Murthy Jatavallabhula, Bipasha Sen, et al. Concept-
graphs: Open-vocabulary 3d scene graphs for perception
and planning. Int. Conf. on Robotics & Automation, 2024.

[15] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary object detection via vision and language
knowledge distillation. In Int. Conf. on Learn. Repr., 2022.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross
Girshick. Mask r-cnn. In Proc. of the IEEE Conf. on
Comp. Vision and Pattern Recognition, pages 2961-2969,
2017.

[17] Pengcheng He, Jianfeng Gao, and Weizhu Chen. De-
bertav3: Improving deberta using electra-style pre-training
with gradient-disentangled embedding sharing. In Int.
Conf. on Learn. Repr., 2022.

[18] Daniel Honerkamp, Tim Welschehold, and Abhinav Val-
ada. N2m?: Learning navigation for arbitrary mobile
manipulation motions in unseen and dynamic environ-
ments. [EEE Transactions on Robotics, 2023. doi:
10.1109/TR0O.2023.3284346.

[19] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language
models. In Proc. of the Conf. on Rob. Learning, 2023.

[20] N. Hughes, Y. Chang, and L. Carlone. Hydra: A real-time
spatial perception system for 3D scene graph construction
and optimization. In Robotics: Science and Systems, 2022.

[21] Brian Ichter, Anthony Brohan, Yevgen Chebotar, Chelsea
Finn, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. In Proc. of
the Conf. on Rob. Learning, 2022.

[22] Markus Kippeler, Kiirsat Petek, Niclas Vodisch, Wol-
fram Burgard, and Abhinav Valada. Few-shot panoptic
segmentation with foundation models. arXiv preprint
arXiv:2309.10726, 2023.

[23] Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and
Anelia Angelova. Open-vocabulary object detection upon
frozen vision and language models. In Int. Conf. on Learn.
Repr., 2023.

[24] Andrey Kurenkov, Michael Lingelbach, Tanmay Agar-
wal, Emily Jin, Chengshu Li, Ruohan Zhang, et al. Mod-
eling dynamic environments with scene graph memory. In
Int. Conf. on Mach. Learning, pages 17976-17993, 2023.

[25] Mathieu Labbé and Francois Michaud. Rtab-map as
an open-source lidar and visual simultaneous localization
and mapping library for large-scale and long-term online
operation. Journal of field robotics, 36(2):416—446, 2019.

[26] Boyi Li, Philipp Wu, Pieter Abbeel, and Jitendra Malik.
Interactive task planning with language models. In 2nd
Workshop on Lang. and Robot Learning: Language as
Grounding (CoRL), 2023.

[27] Chengshu Li, Fei Xia, Roberto Martin-Martin, et al.
igibson 2.0: Object-centric simulation for robot learning
of everyday household tasks. In Proc. of the Conf. on
Rob. Learning, volume 164, pages 455-465, 08—11 Nov

2022.

[28] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco
Pavone, and Jeannette Bohg. Text2motion: from natu-
ral language instructions to feasible plans. Autonomous
Robots, 47(8):1345-1365, 2023.

[29] Michael Lingelbach, Chengshu Li, Minjune Hwang, An-
drey Kurenkov, Alan Lou, Roberto Martin-Martin, Ruohan
Zhang, Li Fei-Fei, and Jiajun Wu. Task-driven graph
attention for hierarchical relational object navigation. In
Int. Conf. on Robotics & Automation, pages 886—893.
IEEE, 2023.

[30] Zeyi Liu, Arpit Bahety, and Shuran Song. REFLECT:
Summarizing robot experiences for failure explanation and
correction. In Proc. of the Conf. on Rob. Learning, 2023.

[31] Christopher D Manning, Prabhakar Raghavan, and Hin-
rich Schiitze. Introduction to information retrieval. Cam-
bridge university press, 2008.

[32] Matthias Minderer, Alexey Gritsenko, Austin Stone,
Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy,
Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani,
Zhuoran Shen, et al. Simple open-vocabulary object
detection. In Proc. of the Europ. Conf. on Computer
Vision, pages 728-755. Springer, 2022.

[33] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby.
Scaling open-vocabulary object detection. Proc. of the
Conf. on Neural Information Processing Systems, 36,
2024.

[34] Zhe Ni, Xiao-Xin Deng, Cong Tai, Xin-Yue Zhu, Xiang
Wu, Yong-Jin Liu, and Long Zeng. Grid: Scene-graph-
based instruction-driven robotic task planning. arXiv
preprint arXiv:2309.07726, 2023.

[35] OpenAl. Gpt-4 technical report.
08774, 2023.

[36] Abhinav Rajvanshi, Karan Sikka, Xiao Lin, et al. Say-
nav: Grounding large language models for dynamic plan-
ning to navigation in new environments. arXiv preprint
arXiv:2309.04077, 2023.

[37] Santhosh Kumar Ramakrishnan, Devendra Singh Chap-
lot, Ziad Al-Halah, Jitendra Malik, and Kristen Grauman.
Poni: Potential functions for objectgoal navigation with
interaction-free learning. In Proc. of the IEEE Conf. on
Comp. Vision and Pattern Recognition, pages 18890—
18900, 2022.

[38] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-
Chakra, et al. Sayplan: Grounding large language models
using 3d scene graphs for scalable task planning. Proc. of
the Conf. on Rob. Learning, 2023.

[39] Nils Reimers and Iryna Gurevych. Sentence-BERT:
Sentence embeddings using Siamese BERT-networks. In
Proc. of the Conference on Empirical Methods in Natural
Language Processing and the International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP),
pages 3982-3992, November 2019. doi: 10.18653/v1/
D19-1410.

[40] Fabian Schmalstieg, Daniel
Welschehold, and Abhinav Valada.

arXiv, pages 2303—

Honerkamp, Tim
Learning long-

horizon robot exploration strategies for multi-object
search in continuous action spaces. In Robotics Research,
pages 52-66, 2022.

[41] Fabian Schmalstieg, Daniel Honerkamp, Tim
Welschehold, and Abhinav Valada. Learning hierarchical
interactive multi-object search for mobile manipulation.
IEEE Robotics and Automation Letters, 2023.

[42] Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for
interpreting grounded instructions for everyday tasks. In
Proc. of the IEEE Conf. on Comp. Vision and Pattern
Recognition, pages 10740-10749, 2020.

[43] Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with
large language models. In Int. Conf. on Computer Vision,
pages 2998-3009, 2023.

[44] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[45] Niclas Vodisch, Kiirsat Petek, Wolfram Burgard, and
Abhinav Valada. Codeps: Online continual learning for
depth estimation and panoptic segmentation. In Robotics:
Science and Systems, 2023.

[46] Abdelrhman Werby, Chenguang Huang, Martin Biichner,
Abhinav Valada, and Wolfram Burgard. Hierarchical open-
vocabulary 3d scene graphs for language-grounded robot
navigation. Robotics: Science and Systems, 2024.

[47] Pengying Wu, Yao Mu, Bingxian Wu, Yi Hou, Ji Ma,
Shanghang Zhang, and Chang Liu. Voronav: Voronoi-
based zero-shot object navigation with large language
model. arXiv preprint arXiv:2401.02695, 2024.

[48] Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir
Navab, and Federico Tombari. SceneGraphFusion: Incre-
mental 3D scene graph prediction from RGB-D sequences.
In Proc. of the IEEE Conf. on Comp. Vision and Pattern
Recognition, pages 7515-7525, 2021.

[49] B. Yamauchi. A frontier-based approach for autonomous
exploration. In Proc. of the IEEE Int. Symp. on Comput.
Intell. in Rob. and Aut., 1997.

[50] Zhongmou Ying, Xianfeng Yuan, Baojiang Yang, Yong
Song, Qingyang Xu, Fengyu Zhou, and Weihua Sheng.
Rp-sg: Relation prediction in 3d scene graphs for unob-
served objects localization. IEEE Robotics and Automa-
tion Letters, 2023.

[51] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, IJi-
uguang Wang, and Bernadette Bucher. VIfm: Vision-
language frontier maps for zero-shot semantic navigation.
Int. Conf. on Robotics & Automation, 2024.

[52] Abdelrahman Younes, Daniel Honerkamp, Tim
Welschehold, and Abhinav Valada. Catch me if you
hear me: Audio-visual navigation in complex unmapped
environments with moving sounds. IEEE Robotics and

Automation Letters, 8(2):928-935, 2023.

[53] Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen,
Hongxia Jin, Lise Getoor, and Xin Eric Wang. Esc:
Exploration with soft commonsense constraints for zero-
shot object navigation. Int. Conf. on Mach. Learning,
2023.

