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Abstract—Integrating language models into robotic exploration
frameworks improves performance in unmapped environments
by providing the ability to reason over semantic groundings,
contextual cues, and temporal states. The proposed method
employs large language models (GPT-3.5 and Claude Haiku) to
reason over these cues and express that reasoning in terms of
natural language, which can be used to inform future states. We
find that by leveraging natural language, semantics, and tracking
temporal states, the proposed method greatly reduces exploration
path distance and further exposes the need for environment-
dependent heuristics. Moreover, the method is highly robust
to a variety of environments and noisy vision detections, as
shown with a 100% success rate in a series of comprehensive
experiments across three different environments conducted in a
custom simulation pipeline operating in Unreal Engine.

I. INTRODUCTION

Exploring unmapped environments is paramount to modern
robotic applications, such as search-and-rescue and assistive
robotics. While state-of-the-art methods have made incredi-
ble progress in exploring in challenging search and rescue
scenarios [5, 46, 1], they typically rely on hand-engineered
heuristics based on the geometry of the environment, e.g.
optimizing for volumetric gain. Such hand-engineered features
fail to incorporate the rich semantics and contextual cues of
an environment [4].

Given the problem of exploring a previously unknown
environment, we develop a framework, Contextual Exploration
(Cog Explore), that leverages foundation models, or large
language models (LLMs) with natural-language-based repre-
sentations of the environment to perform navigation using both
geometric and contextually rich features, as well as temporal
states.

To effectively leverage natural language, we must ground
language utterances to the physical. Various approaches have
been used to associate language with the physical domain,
ranging from probabilistic graph-based structures [43, 20, 26]
to end-to-end learning-based methods [14]. We represent the
grounding problem as a probabilistic set of planning points,
object points, and language priors obtained from a set of vision
models. Our framework then selects the next best location to
explore given this set of priors and a goal. Specifically, we
leverage foundation models [7] [23] which have shown the
ability to exhibit remarkable contextualization and reasoning
by utilizing efficient next token predication. We validate Cog-
Explore’s exploration capabilities with 210 simulations of 45

minutes each operating in 3 different environments across 7
different tasks and show the method is capable of performing
temporal, geometric, and semantic reasoning.

Fig. 1: Spot observing features of its environment for the
prompt “Find a garden.”

II. RELATED WORKS

A. Robotic Exploration

Graph-based approaches have proven effective in robotic
exploration [43, 20, 26, 28, 36, 24, 27, 50]. These methods
construct topological representations of the environment to
guide exploration and planning. Recent works have incorpo-
rated semantics into these graph-based frameworks to enhance
performance [11].

In addition to graph-based techniques, neural networks have
been applied to robotic navigation, often serving as heuristics
[31]. Leveraging advancements in computer vision, modern
perception models have been integrated with traditional explo-
ration approaches, leading to improved capabilities [17, 21].

B. LLM-Powered Robotic Navigation

LLMs have emerged as powerful tools for robotic navigation
and manipulation. By encoding scene dynamics and task
specifications in natural language, LLMs enable robots to
reason about their environment and objectives at a high level
[51, 2].

LLMs can act as agents capable of decomposing and exe-
cuting complex tasks through modular prompting [30, 18, 22].
They have demonstrated proficiency in code generation for
robotic applications [32, 47, 35, 38]. The combination of
embodied agents for low-level skills and LLMs for high-level
reasoning has shown promise [6].

End-to-end neural network approaches such as LATTE [8]
and CLIPort [42] map natural language intentions to robot
actions. HULC [34] combines language conditioning and



semantic knowledge for efficient imitation learning. While this
approach works well in specific domains, it is not able to learn
from the voluminous unsupervised datasets LLMs are trained
from.

Fig. 2: CogExplore System Diagarm

Grounding natural language instructions to the physical
environment is crucial for LLM-powered robotic naviga-
tion. Neuro-symbolic approaches [33] and learned traversabil-
ity functions [39] have been explored for this purpose.
PromptCraft [49] tackles the challenge of describing complex
navigation tasks through prompt engineering. ORION [12]
demonstrates personalized, interactive object navigation using
natural language.

While LLMs excel at reasoning over unstructured data
[16, 45, 44, 52] using transformer architectures [48], guiding
them to desired outcomes and maintaining temporal coherence
remains an open problem. Recent works integrating LLMs
with object scene representation transformers for task and
motion planning [6, 14, 38] still lack the interpretability and
guarantees of traditional methods [36].

The semantic reasoning abilities of LLMs have been lever-
aged to guide exploration and planning in novel environments
[40, 41]. LLMs have also been utilized for semantic grounding
in complex outdoor environments using contextually relevant
instructions [41]. Our method introduces new capabilities to
this body of work, allowing LLMs to selectively encode rele-
vant states based on environment descriptions and then reason
directly over these natural language-encoded states, along with
temporal states derived from a log of past movements.

III. METHODOLOGY: COGEXPLORE

Our proposed exploration framework, CogExplore, repre-
sents relevant features of the environment as natural language
strings. Formally, we represent possible states for the robot
as, S = {s1, s2, ..., sn} where si is a possible state for
the robot. At each state, the robot has a set of planning
graph points G = {g1, g2, ..., gk}, a set of object points
O = {o1, o2, ..., om} and a set of language priors L. Graph
points represent traversable areas of the environment (sampled
from [13]), and we represent them as a list in text from
Gi = {x, y, z}. Object points are represented similarly but with
a corresponding label and probability (Oi = {x, y, z, c, p}
where c is the class and p is the confidence represented as a
probability), obtained from an open vocabulary object detector.
Specifically, we utilize YoloWorld [10] and Segment Anything
[25] to project open vocabulary detections into 3D points.
Examples of G,L, and O can be seen in Figure 1 and full

details of, the open vocabulary 3D detection system can be
found in Section VIII-A of the Appendix. The language priors,
L, consist of three components; environmental descriptions,
prior robot states, and the justification for choosing the next
state. Environment descriptions D are obtained from a series of
questions generated by foundation model and answered using
a multimodal visual question and answering model (VQA)
called LLaVA -1.5 [29], as shown in Figure 2. Prior states
(si−n) and the justification for choosing the state (Ji−n) and
the full set of language priors is L = {Ji−n, si−n,D} along
with the model’s justification for selecting the state. In order to
select the next best state, we can model the task as a maximum
likelihood estimate:

arg max
s1,s2,...,st

P (sg|st,S,O,G,L)
t∏

i=1

P (si|si−1,S,O,G,L)

(1)
At each iteration, the foundation model is asked to direct

the robot to the state that is most likely to find the goal state,
sg given the robot’s past states and any new observations. The
process repeats until the robot arrives at sg .

A. Exploration Planner

CogExplore’s autonomous navigation uses a state-of-the-
art graph-based exploration planner with frontier point finding
[13] to help the language model select reliable states. Realtime
mapping is performed using the a voxel-based map [19]. At
each planning iteration, a set of sparse global graph points and
dense local points are generated. We employ a 2D Gaussian
function to sparsity the distribution of these points, where
weights are assigned based on their proximity to the robot’s
current location. The result G is a distribution of low-density
points in distant areas with a high concentration of points near
the agent allowing CogExplore to plan with high granularity
locally while still having the ability to explore regions of
interest that are further away.

B. Foundation Model Prompting Schemes

We rely on language foundation models to perform four
tasks: generating questions about the environment, generating
object labels, compressing state information, and performing
state selection. Foundation models are highly sensitive to the
particular presentation of the underlying information [9]. To
assist the model’s geometric reasoning, we label some of the
graph points (G) as new if they are in an unexplored region.
A point is labeled as new if it is beyond a certain distance
threshold from all existing points in the graph.

For each iteration of the exploration cycle, the LLM is given
a form to fill out, which creates a set of fields for the next
waypoint output, as well as fields for a characterization of
the environment and a justification field to insert reasoning
for the selection of the particular waypoint it chose. Once the
generation is complete, the LLM is queried again to compress
the prior output into a concise state of 50-100 words (J ) these
compressed states with justifications enable CogExplore to
reason over its past states, facilitating a contiguous exploration



Fig. 3: Example Runs Demonstrating Varieties of Reasoning

process. Each of these logs is appended to a memory window
with some fixed length, in practice we discovered a length of
10 was appropriate for both GPT-3.5-Turbo and Claude Haiku.
Full prompts and information on prompt engineering can be
found in the Appendix.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the performance of CogExplore’s ability to
explore and find a target object using a simulated Boston
Dynamics Spot in three different environments using Unreal
Engine [15]. We compare CogExplore against a A∗ direct path
metric and the Vision-Enabled Frontier Exploration Planner
(VEFEP) described below.

Two office scenes (Office 1, Office 2) and a more complex
school environment (School) were designed, which provided
the structure for a total of 7 object-retrieval scenarios to be
tested, as shown in Table I. In Office 1, there were three tasks
involving locating a fire extinguisher in different locations,
denoted as FE1, FE2, and FE3. Office 2 featured two tasks:
finding a coffee table (CT ) and an office chair (OC). In
School, the tasks were to locate a whiteboard (WB) and a
bookshelf (BS).

For each task, we simulate the navigation capabilities of a
Boston Dynamics Spot and allow the robot to explore for 45
minutes. A run terminates once the target object is found.
We conduct 15 trials per task on Azure “NC64as T4 v3”
instances with 4 Nvidia T4 GPUs. We utilize 3 GPUs per
simulation, one for the unreal simulator, one for the object
detector, and one for the VQA model. We note that for Office
1, and the school scene, the simulator runs in real-time. While
in Office 2 the simulator runs in half-time due to higher quality
graphical assets.

We compare the performance of CogExplore running with
Anthropic’s claude-3-haiku-20240307 (CE-H) and OpenAI’S
gpt-3.5-turbo-0125 (CE-3.5) as the backend models to a base-
line Vision-Enabled Frontier Exploration Planner (VEFEP).
VEFEP calculates the exploration gain heuristic g for a given
path σi by summing the volumetric gain VG weighted by
a function for each vertex in the path [3]. Parameters are
based on the ones used by the authors in [13]. This planner
explores until it detects the target object using the same 3D
open Vocabulary detector used by CogExplore.

Quantitative Results: From Figure 4 we can see that in
Office 1, the smallest environment, VEFEP, CE-H, and CE-

3.5 all have similar mean path lengths. As the environment
size increases in Office 2, making the exploration tasks more
complex, we observe that on the office chair task both CE-
H and CE-3.5 outperform VEFEP. We also note that VEFEP,
timed out in 3 out of 15 of the runs as noted in Table I.
VEFEP had the lowest median run length in the coffee table
task. However, it also failed to find the table in 6 out of 15
experiments, as shown in Table I. In the whiteboard eraser
task, both CE models significantly outperform VEFEP, which
also had 5 out of 15 failures or a 33.3% failure rate. Of note,
is that none of the CE methods failed at the exploration task
in any of the environments.

Qualitative Results: In Figure 5 we observe that in the
Whiteboard Eraser task CE-H and CE-3.5 only enter the room
with the eraser once whereas VEFEP enters, exits and proceeds
to loop around the environment. Similarly, in the Go to the
Office Chair task CE-H and CE-3.5, immediately go to the
chair and take more efficient paths to get there. In contrast,
VEFEP heads outside and explores the areas significantly
before returning to indoors to find the chair.

V. DISCUSSION

Our results highlight the robustness of CogExplore’s ex-
ploration abilities with a 100% success rate across all en-
vironments with both GPT and Haiku variants, in contrast
to VEFEP’s 15.2% overall failure and 40% failure rate at
the coffee table task. Moreover, CogExplore’s use of natural
language justifications for each state selection allows us to
directly probe why the framework is acting in a certain
manner and understand the rationale behind the more efficient
exploration paths. From these justifications, we can see that the
model is capable of performing geometric reasoning, semantic
reasoning, temporal reasoning, and fault-tolerant reasoning.

Geometric Reasoning. We see geometric reasoning on the
right side of Figure 3 where the model explicitly chooses
a point behind the robot. The robot camera positions are
encoded into the prompt and the model is aware that the
robot can not detect objects, directly behind it, since there is
no rear camera. This variety of intuitive geometric reasoning
directly contributes to the shorter exploration path lengths
demonstrated by CogExplore.

Semantic Reasoning. Another key factor that contributes
to robust and efficient performance is the model’s ability to
semantically reason over cues in the environment. In the center
of Figure 3 we see the model choosing a nearby point because
a desk was found that could contain a whiteboard eraser



Office 1 (572 m2): Figure 11a Office 2 (1450 m2): Figure 11b School (1287 m2): Figure 11c

Task Direct
Path (m)

VEFEP #
Timeout Task Direct

Path (m)
VEFEP #
Timeout Task Direct

Path (m)
VEFEP #
Timeout

Fire Extinguisher
1 (FE1) 25.2 0 Office

Chair (OC) 33.7 3
Whiteboard
Eraser
(WE)

26.1 5

Fire Extinguisher
2 (FE2) 27.1 0 Coffee

Table (CT) 26.2 6 Book-
shelf (BS) 13 2

Fire Extinguisher
3 (FE3) 15.6 0

TABLE I: Simulation Environments and Corresponding Tasks. Each run was given 45 minutes of simulation time to complete.
None of the CogExplore runs timed out, and the VEFEP timeouts are shown here.

CE-H CE-3.5 VEFEP
A∗ Direct Path

0 50 100 150 200 250

FE1

FE2

FE3

0 200 400 600 800

CT

OC

0 200 400 600 800 1,000

WB

BS

Path Length (m)

Fig. 4: Path length comparisons for each method (CE-3.5, CE-
H, VEFEP) on completing each of the seven tasks. The A∗

Direct Path from starting position to object position is also
shown. Medians are shown in the box color and means are
shown in black.

(the desired object in the exploration task). Both objects are
commonly located in classroom and office settings, hence they
share semantic similarities. Traditional frontier-based planners
continue exploring other areas based on the original heuristic
for volumetric gain despite these cues, which is also evident
by the path taken by VEFEP in Figure 5.

Temporal Reasoning. Beyond reasoning over the current
state, efficient path exploration requires an agent to reason
over its past states. In CogExplore’s case, we note the robot
venturing to a new area despite having a point labeled as
a fire extinguisher (the target exploration object). The robot
already explored the nearby area in detail in a prior state,

and the target object was never reached. The model correctly
concludes the detection was in error. CogExplore justifies this
change based on an understanding that object detections can
be fallacious, which also highlights the framework’s ability to
perform fault-tolerant reasoning and remain robust to noisy
sensor observations. In contrast, it was observed that the
VEFEP planner would frequently stick around objects as the
location of the 3D object projections were refined (as new
observations were obtained), despite this not being an effective
strategy after a few iterations.

Fig. 5: Note that the VEFEP revisits the same places several
times before eventually locating the goal object, whereas the
CogExplore is able to more effectively reason over unexplored
regions.

VI. CONCLUSION

CogExplore is a comprehensive framework for leveraging
foundation models in robotic exploration tasks. The framework
offers the ability to perform exploration that is geometrically,
semantically, and temporally aware while remaining resilient
to failures in grounding. Performance is evaluated across 210
photorealistic simulations in 3 different environments with 7
different exploration tasks. Our findings reveal that as the
complexity of the exploration task increases, in terms of envi-
ronment size and trajectory length, CogExplore’s performance
advantage over a vision-enabled exploration planner becomes
more pronounced. This positive correlation shows that Co-
gExplore is particularly well-suited for handling challenging
navigation scenarios.
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VII. APPENDIX

A. Overhead Path Views

Fig. 6: Birds-eye view of Office Environment 1 (OE1) for task
Fire Extinguisher 1 (FE1).

Fig. 7: Birds-eye view of Office Environment 1 (OE1) for task
Fire Extinguisher 2 (FE2).

VIII. UNREAL RENDERINGS

Example renderings from each scene are shown in Figure
11

A. Open Vocabulary Object Detection Pipeline

Our open vocabulary detection pipeline is shown in Figure
12

Fig. 8: Birds-eye view of Office Environment 1 (OE1) for task
Fire Extinguisher 1 (FE3).

Fig. 9: Birds-eye view of School for task Bookshelf

Fig. 10: Birds-eye view of Office 2 for task Coffee Table



(a) Office 1 (b) Office 2 (c) School

Fig. 11: Renderings from Unreal Engine Environments

Fig. 12: Open Vocabulary Detection Pipeline. The pipeline uses YOLO World [10], a variant of YOLO [37] to perform 2D
detections which are then segmented by Segment Anything [25]. We take the centroid of the segmented object and perform a
ray cast to project the object onto the robot’s Octomap [19]. Projections are filtered using a weighted median filter.



B. Prompts For Foundation Models

The full foundation model prompts for the foundation model
are provided below. To guide both models toward more effec-
tive exploration, we added model-specific instructions at the
end of the general prompt. These additions aimed to address
model-specific issues where certain aspects of the general
prompt were either being followed too closely or ignored.

In GPT-3.5’s case, the model would occasionally select
waypoints near windows when a potential object was visible
through the transparent glass. To mitigate this, we explicitly
reminded this model that windows might obscure routes
to prospective targets, encouraging more practical waypoint
choices. Claude Haiku was quite conservative in its exploration
behavior especially before semantic cues were discovered.
Explicit language was added to prioritize the exploration of
new areas.



Your t a s k i s t o c r e a t e a l i s t o f 3 t o 5 q u e s t i o n s f o r a VQA ( v i s u a l q u e s t i o n a n s w e r i n g model ) t h a t g e n e r a t e a c l e a r
and c o n c i s e d e s c r i p t i o n o f t h e e n v i o r n m e n t t h a t can l a t e r used by t h e r o b o t i c a g e n t t o n a v i g a t e t o t h e o b j e c t
o r a r e a d e s c r i b e d by t h i s command : *INSERT QUERY HERE*

The d e s c r i p t i o n you e l i c i t by p r o v i d i n g q u e s t i o n s t o t h e VQA model i s go ing t o be p a s s e d t o an o p e r a t o r who w i l l use
i t s c o n t e n t t o make g u e s s e s a b o u t what o b j e c t s i n t h e e n v i r o n m e n t t o t r y t o d e t e c t t o a s s i s t w i th n a v i g a t i o n .

VQA models a r e g r e a t a t p r o v i d i n g s p e c i f i c f e e d b a c k t o s p e c i f i c q u e s t i o n s .

The r o b o t you a r e g u i d i n g i s t h e s p o t r o b o t from Boston Dynamics .

The o b j e c t o r a r e a we a r e a f t e r may be i n p l a i n view or may r e q u i r e e x p l o r a t i o n t o d i s c o v e r . Do n o t presume t h e
e x i s t e n c e o f any o b j e c t s t h a t you t h i n k may be i n t h e s c e n e .

For example , DO NOT ask any q u e s t i o n s a b o u t t h e t a r g e t a r e a o r o b j e c t d e s c r i b e d i n t h e command above . For example i t
i s c o r r e c t t o ask i f t h e t a r g e t o b j e c t i s v i s i b l e i n t h e scene , b u t i t i s i n c o r r e c t t o ask f o r d e t a i l s a b o u t
t h e t a r g e t o b j e c t s i n c e i t may or may n o t be i n t h e image .

Ask yes o r no q u e s t i o n s a b o u t whe the r an o b j e c t e x i s t s o r ask g e n e r a l q u e s t i o n s a b o u t t h e k ind of e n v i r o n m e n t
d e p i c t e d w i t h i n t h e image . DO NOT ASK ANY OTHER KIND OF QUESTION .

Your work w i l l be added a f t e r two s t a r t e r q u e s t i o n s ( do n o t i n c l u d e them i n your r e s p o n s e ) :
[ ” What i s t h e g e n e r a l s e t t i n g o f t h e e n v i r o n m e n t : domes t i c , i n d u s t r i a l , n a t u r a l ? ” , ”What a r e t h e most p r o m i n e n t

f e a t u r e s v i s i b l e i n t h i s e n v i r o n m e n t ? ” ]

Expand on t h e s e q u e s t i o n s wi th 3 t o 5 of your own . Do n o t r e p l i c a t e t h e work done by t h e above g e n e r i c q u e s t i o n s .
Wr i t e your r e s p o n s e f o r m a t t e d as a py thon l i s t . Tha t i s a l i s t d e n o t e d by b r a c k e t s wi th each q u e s t i o n s e p a r a t e d
by a comma . Only w r i t e t h i s l i s t . Do n o t i n c l u d e a n y t h i n g e l s e i n your r e s p o n s e .

For example , a l i s t w i th t h e two above q u e s t i o n s i n c l u d e d would look l i k e : [ ” What i s t h e g e n e r a l s e t t i n g o f t h e
e n v i r o n m e n t : domes t i c , i n d u s t r i a l , n a t u r a l ? ” , ”What a r e t h e most p r o m i n e n t f e a t u r e s v i s i b l e i n t h i s
e n v i r o n m e n t ? ” ]

Note , your r e s p o n s e must be a p e r f e c t l y f o r m a t t e d l i s t . You c a n n o t i n c l u d e any o t h e r comments o r c h a r a c t e r s i n your
r e s p o n s e t h a t a r e n o t p r e c i s e l y f o r m a t t e d i n t h e same manner a s t h e l i s t example above . Make s u r e t o i n c l u d e
commas i n between e n t r i e s w i t h i n t h e l i s t . Make s u r e t o i n c l u d e q u o t e s a round each e n t r y w i t h i n t h e l i s t . These
a r e s t r i n g s w i t h i n python , t h e y r e q u i r e q u o t e s .

Do n o t i n c l u d e any of t h e s t a r t e r q u e s t i o n s i n your r e s p o n s e . J u s t i n c l u d e t h e q u e s t i o n s you have t h o u g h t up .

The VQA model does n o t know a n y t h i n g a b o u t t h e p o s i t i o n o f t h e r o b o t o r t h a t i t i s examin ing images from a r o b o t .
The q u e s t i o n s must be s t r a i g h t f o r w a r d and d i r e c t l y a b o u t t h e image i t s e l f .

Fig. 13: VQA Prompting

*INSERT SCENE DESCRIPTION*

Given you have t h i s d e s c r i p t i o n o f an e n v i r o n m e n t we want t o i d e n t i f y a s e t o f o b j e c t s t h a t h e l p us n a v i g a t e a
r o b o t i c a g e n t t o f u l f i l l t h e g o a l : *INSERT QUERY HERE*

Given t h i s i n f o r m a t i o n , g e n e r a t e a comprehens ive l i s t o f a l l o b j e c t s i n c l u d i n g t h e o b j e c t s r e f e r e n c e d i n t h e prompt
t h a t may h e l p t h e r o b o t i c a g e n t f u l f i l l t h e n a v i g a t i o n r e q u e s t . Th i s l i s t w i l l be used t o g u i d e an o b j e c t
d e t e c t i o n machine l e a r n i n g model . So words i n t h i s l i s t s h o u l d be g e n e r a l and l i k e l y t o be s p o t t e d w i t h i n

t h e e n v i r o n m e n t a s we have c h a r a c t e r i z e d i t i n t h e s c e n e d e s c r i p t i o n d e t a i l s above . You s h o u l d look f o r s p e c i f i c
i n d i v i d u a l i t ems , such as t a b l e s , and p l a n t s t h a t can be e a s i l y d i s t i n g u i s h e d from t h e background . DO NOT look
f o r g e n e r a l e n t i t i e s t h a t c o u l d t a k e up t h e e n t i r e f rame such as wal l , f l o o r , pa th , road , o r pa rk . L a b l e s l i k e
t h i s s h o u l d n o t be i n your l i s t .

Do n o t look f o r ve ry l a r g e o b j e c t s .

Always i n c l u d e t h e o b j e c t o r a r e a you a r e s e a r c h i n g f o r i n t h i s l i s t . Rember t h i s o b j e c t d e t e c t o r i s r u n n i n g i n
r e a l t i m e on a moving r o b o t .

Th i s l i s t s h o u l d be between 1 and 5 o b j e c t s i n l e n g t h . I t s h o u l d be f o r m a t t e d as a py thon l i s t . For example , a l i s t
o f t h e f o l l o w i n g o b j e c t s would be p r e c i s e l y f o r m a t t e d as : [ ” c h a i r ” , ” t a b l e ” , ” he lm e t ” , ” t r e e ” ]

Note t h e f i r s t e n t r y must be t h e g o a l o b j e c t !

Th i s l i s t i s t h e on ly t h i n g t h a t s h o u l d be i n c l u d e d i n your r e s p o n s e . The py thon l i s t f o r m a t must be f o l l o w e d
p r e c i s e l y . Be s u r e t o i n c l u d e q u o t e s a round t h e e l e m e n t s o f t h e l i s t .

Do n o t r e t u r n a n y t h i n g b e s i d e s t h i s l i s t .

Fig. 14: Object Detection Label Prompting



You a r e g u i d i n g a r o b o t i c a g e n t t o s o l v e t h e f o l l o w i n g r o b o t i c n a v i g a t i o n t a s k *INSERT QUERY HERE * .
You a r e a s s i s t e d by an e x p l o r a t i o n p l a n n e r t h a t p r o d u c e s p o t e n t i a l new a r e a s t o e x p l o r e i n t h e form of g raph and

f r o n t i e r p o i n t s . F r o n t i e r p o i n t s t e n d t o be i n a r e a s you have e x p l o r e d l e s s o r have j u s t d i s c o v e r e d .
There i s a l s o an onboard o b j e c t d e t e c t o r t h a t p r o d u c e s 3D p r o j e c t i o n s o f p o i n t s i n s p a c e t h a t c o r r e s p o n d t o o b j e c t s

from a g i v e n o b j e c t l i s t . Remember o b j e c t p o i n t s r e p r e s e n t t h e c e n t r o i d f o r an o b j e c t and your p l a n n e r w i l l g e t
you as c l o s e as i t can t o them .

O b j e c t p o i n t s a r e o f t e n n o t p e r f e c t l y l a b e l e d . F r o n t i e r p o i n t s a r e c a l c u l a t e d based on e x p l o r a t i o n p o t e n t i a l . O b j e c t
p o i n t s w i l l come from a r e a s you have a l r e a d y o b s e r v e d .

Your o b j e c t i v e i s t o s e l e c t a p o i n t from among t h e s e w i t h i n t h e scene , and d e t e r m i n e what w i l l s e r v e as t h e r o b o t ’ s
n e x t waypo in t .

You w i l l on ly have w a y p o i n t s i n a r e a s your r o b o t can s e e wi th i t s l i d a r and cameras . So , i t i s i m p o r t a n t t o p robe
a r e a s t h a t p o t e n t i a l l y o f f e r v a n t a g e s f o r v iews you have n o t y e t s een . When you s e e new a r e a s , you s h o u l d
e x p l o r e them .

I f you have been n e a r a t a r g e t f o r more t h a n one c a l l t o t h i s p o i n t s e l e c t i o n l o g i c , t h e n i t i s n o t t h e c o r r e c t
t a r g e t . The computer v i s i o n your r o b o t has i s n o t p e r f e c t b u t i s t u n e d t o w a r d s p r o d u c i n g more f a l s e p o s t i v e s .
Be a d v e n t u r o u s i n your e x p l o r a t i o n , t r a v e l t o a r e a s f a r way from you .

Remember your r o b o t i s c o n t i n u o u s l y d e t e c t i n g o b j e c t s and has a l e f t , r i g h t and f r o n t cameras . When you s e l e c t a
p o i n t t h e p l a n n e r w i l l p l a n a d i r e c t r o u t e f o r your r o b o t t o t a k e . I f t h e t a r g e t o b j e c t i s d e t e c e t e d a l o n g your
pa th , t h e r o b o t w i l l go t o i t and add an e n t r y t o t h e summary below .

Use t h e a v a i l a b l e i n f o r m a t i o n from t h e r o b o t below a l o n g wi th any c o n t e x t u a l i n f o r m a t i o n you have a v a i l a b l e t o
s e l e c t t h e n e x t p o i n t t o n a v i g a t e t o .

The t ime s i n c e s t a r t o f sim i s :
*INSERT CURRENT TIME* s e c o n d s
The s p o t r o b o t i s now a t :
*INSERT CURRENT POSITION*
Here i s a d e s c r i p t i o n o f t h e a r e a s p o t i s c u r r e n t l y i n :
*INSERT SCENE DESCRIPTION*
The r o b o t has been i n s t r u c t e d t o s e a r c h f o r t h e s e o b j e c t s :
*INSERT OBJECT LIST*
You have t h e f o l l o w i n g l i s t o f p o i n t s you may choose from ( graph p o i n t s a r e n o t l a b e l e d , f r o n t i e r p o i n t s and o b j e c t

p o i n t s a r e ) . I f a g raph p o i n t i s l a b e l e d as ”new” t h e n i t i s from a r e g i o n you have d i s c o v e r e d i t i n t h e l a s t
s t e p and a r e now a b l e t o p l a n t o .

You s h o u l d go t o new p o i n t s ! They r e p r e s e n t unknown a r e a s and new views f o r your cameras and l i d a r . You may s e l e c t
e i t h e r a g raph p o i n t o r an o b j e c t p o i n t .

*INSERT FRONTIER OBJECT POINT NUMBERED LIST*
You have been asked t o h e l p i n t h e p a s t *INSERT TOTAL CALLS* t i m e s t o in fo r m t h i s n a v i g a t i o n t a s k . You s h o u l d n e v e r

go t o t h e same p o i n t m u l t i p l e t i m e s . The s i m u l a t i o n ends when you r e a c h t h e t a r g e t .
Here i s a summary of t h e a c t i o n s you pe r fo rmed i n t h e l a s t *INSERT MEMORY LENGTH* c a l l s :
*INSERT PRIOR STATES*
*INSERT INTERRUPT DESCRIPTION*
Now t h a t you know where you ’ ve been , t r y t o e x p l o r e a r e a s you have n o t y e t been t o . Use t h e d e s c r i p t i o n o f t h e

e n v i r o n m e n t i n p a s t s t a t e s t o go where t h e o b j e c t i s most l i k e l y . I f you have no p r i o r s t a t e s , be a g g r e s s i v e i n
your e x p l o r a t i o n .

I f you have been by a p o i n t f o r more t h a n one c a l l , you s h o u l d move , even i f i t i s t h e t a r g e t o b j e c t . The r o b o t ’ s
v i s i o n makes m i s t a k e s . Do n o t go t o t h e same p o i n t more t h a n once ! Check t h e c o o r d i n a t e s ( x , y , z ) o f t h e p o i n t ,
i f you ’ ve gone n e a r t h e r e b e f o r e i n any of t h e s e p r i o r s t a t e s , don ’ t go t h e r e a g a i n .

Change p o i n t s e v e r y t ime , even i f t h e p o i n t i s an o b j e c t p o i n t which a p p e a r s t o be t h e t a r g e t . C y c l i n g back and
f o r t h between two a r e a s w i l l n o t g i v e new o b s e r v a t i o n s . The e n v i r o n m e n t i s s t a t i c i f you have a l r e a d y been t o
an a r e a your cameras s h o u l d have found t h e o b j e c t .

As you e x p l o r e t h e scene , new p o i n t s w i l l become a v a i l a b l e f o r you t o p l a n t o . Try t o s e l e c t p o i n t s on t h e edge of
t h o s e a v a i l a b l e t o you . C o n s i d e r a r e a s t h a t w i l l a l l o w you t o d i s c o v e r new p o i n t s . I f a p o i n t i s f a r from t h e
o t h e r p o i n t s i n your l i s t and i n your p r i o r s t a t e s , i t i s a good c a n d i d a t e .

Reason a b o u t t h e a r e a o f s p a c e d e f i n e d by your p o i n t s . Go t o a r e a s and rooms o u t s i d e o f s p a c e s you have e x p l o r e d .
Avoid c o n s i d e r i n g p o i n t s n e a r your c u r r e n t l o c a t i o n i f you do n o t b e l i e v e t h e y a r e n e a r t h e t a r g e t .
Do n o t worry a b o u t c o l l i s i o n s . A l l p o i n t s a r e s a f e t o t r a v e l t o . E x p l o r e t h e s p a c e a g g r e s s i v e l y . Seek o u t t h e o b j e c t

and t r u s t t h e r o b o t ’ s v i s i o n t o f i n d i t .
I f you have a p o i n t o r p o i n t s which a r e l a b e l e d as a new p o i n t , you s h o u l d go t o one of t h e s e p o i n t s , your t a s k i s

t o t o e x p l o r e wi th c o n t e x t u a l a w a r e n e s s . These new p o i n t s a r e newly d i s c o v e r e d and r e p r e s e n t a h igh p o t e n t i a l
f o r d i s c o v e r i n g your t a r g e t .

R e c a l l , you s h o u l d c o n s i d e r x , y , and z when d e c i d i n g where t o go f o r bo th t h e o b j e c t l o c a t i o n s and t h e p o t e n t i a l
f r o n t i e r p o i n t s you want t o go t o . Do n o t j u s t l ook a t one c o o r d i n a t e ! C o n s i d e r bo th x and y e q u a l l y ! E u c l i d i a n
d i s t a n c e s h o u l d be used , we want t o be c l o s e t o t h e t a r g e t o b j e c t a c r o s s a l l d i m e n s i o n s .

The d i s t a n c e f i e l d i n your p o i n t l i s t i s t h e E u c l i d i a n d i s t a n c e from t h e r o b o t t o t h e o b j e c t .
NEVER GO TO THE SAME AREA TWICE IN A ROW! ! !
*INSERT SPECIFIC MODEL INSTRUCTIONS*
Based on t h e i n f o r m a t i o n above f i l l o u t t h e form below ( i f you s e l e c t an o b j e c t , make s u r e t o e x p l a i n why t h a t

o b j e c t i s r e l a t e d t o t h e n a v i g a t i o n t a s k . R e f e r e n c e p a s t s t a t e s i n your r e a s o n i n g . You s h o u l d a lways n a v i g a t e
i n r e f e r e n c e t o where you ’ ve been . Reason a b o u t t h e s p a c e you a r e i n . R e f e r e n c e t h e o b j e c t s you s e e and
c a t e g o r i z e your e n v i r o n m e n t . ) :

I need t o s e l e c t a waypo in t from a numbered l i s t o f g raph p o i n t s , f r o n t i e r p o i n t s and o b j e c t p o i n t s . The p o i n t I
have s e l e c t e d i s p o i n t number : [ i n s e r t t h e graph , f r o n t i e r o r o b j e c t p o i n t numera l number h e r e ] . I am s e l e c t i n g
t h i s p o i n t b e c a u s e I b e l i e v e i t makes s t r a t e g i c s e n s e t o g e t me c l o s e r t o s o l v i n g my n a v i g a t i o n t a s k
”*INSERT QUERY HERE * ” . My e n v i r o n m e n t can be d e s c r i b e d as [ d e s c r i b e t h e e n v i r o n m e n t ] . My r e a s o n i n g i s t h a t t h i s
p o i n t [ i n s e r t your r e a s o n i n g h e r e ] .

Fig. 15: Explore Iteration Prompting



I f you s e e t h e o b j e c t go d i r e c t l y t o i t .

Avoid go ing t o r e g i o n s t h a t you have been t o b e f o r e . C o n s i d e r how c l o s e t h e p o i n t you a r e s e l e c t i n g i s wi th t h o s e
l i s t e d i n your p r i o r s t a t e s .

I f i t i s nearby , don ’ t r e t u r n t o i t .

Use your v i s i o n t o go t o a r e a s t h a t a r e r i c h wi th o b j e c t s l i k e t h e one you a r e a f t e r .

Newly d i s c o v e r e d a r e a s t h a t a r e f a r away a r e h i g h l y a d v a n t a g e o u s
i f t h e y a r e f a r from where your r o b o t has t r a v e l e d b e f o r e .

Use t h e p o i n t s t o g a i n a s e n s e o f s p a c e . T r a v e l t o r e g i o n s where you have n o t y e t been .

Don ’ t be t r i c k e d by windows , i f you can ’ t g e t t o i n t e r e s t i n g o b j e c t s , t h e y might be be h in d a window .

GO TO AREAS THAT ARE FAR AWAY! DON’ T STAY IN ONE REGION ! !

Fig. 16: GPT-3.5 Turbo Specific Prompt Additions

Avoid l o o p i n g between a r e a s you have a l r e a d y been t o . Try t o f i n d new a r e a s so you w i l l g e n e r a t e g raph p o i n t s f o r
them .

I f t h e r e i s an a r e a you have n o t been t o ye t , go t o i t . Never do ub l e back , keep e x p l o r i n g n e a r by unknown a r e a s .

C o n s i d e r each p r i o r s t a t e , do n o t r e t u r n t o anywhere n e a r t h e s e l o c a t i o n s .

Newly d i s c o v e r e d a r e a s t h a t a r e f a r away a r e h i g h l y a d v a n t a g e o u s i f t h e y a r e f a r from where your r o b o t has t r a v e l e d
b e f o r e .

Use t h e p o i n t s t o g a i n a s e n s e o f s p a c e . T r a v e l t o r e g i o n s where you have n o t y e t been .

Always p r i o r i t i z e new p o i n t s when t h e y a r e a v a i l a b l e .

GO TO AREAS THAT ARE FAR AWAY! DON’ T STAY IN ONE REGION ! !

Fig. 17: Claude Haiku Specific Prompt Additions
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