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Abstract—Grounding spatiotemporal navigation commands
to structured task specifications enables autonomous robots
to understand a broad range of natural language and solve
long-horizon tasks with safety guarantees. Prior works mostly
focus on grounding spatial or temporally extended language
for robots. We propose Lang2LTL-2, a modular system that
leverages pretrained large language and vision-language models
and multimodal semantic information to ground spatiotemporal
navigation commands in novel city-scaled environments without
retraining. Lang2LTL-2 achieves 93.53% language grounding
accuracy on a dataset of 21,780 semantically diverse natural
language commands from unseen environments. We run an
ablation study to validate the need for different modalities. We
also show that a physical robot equipped with the same system
without modification can execute 50 semantically diverse natural
language commands in both indoor and outdoor environments.2

I. INTRODUCTION

When giving directions, humans often use natural lan-
guage that describes goals, as well as temporal and spatial
constraints. For example, consider the command “Visit the
Starbucks, only then go to the red car to the right of the build-
ing, and always avoid the crowded restaurant near the cafe.”
An autonomous robot following this spatiotemporal command
must understand that it specifies a temporally extended task of
visiting two locations in a strict order and avoiding the third
throughout the execution. The robot must ground the three
referring expressions, i.e., “the Starbucks,” “the car,” and “the
crowded restaurant,” to specific locations with respect to other
landmarks in the environment.

Existing approaches focus on developing the robot’s spatial
or temporal reasoning ability separately. Many works develop
systems to ground natural language commands that contain
rich spatial relations in indoor [1, 2, 3] and outdoor [4, 5]
environments. A map that contains multimodal semantic in-
formation enables robots to identify various target landmarks
with respect to others in the environment, yet these approaches
cannot handle temporal constraints. Separately, structured task
specifications, like linear temporal logic (LTL), can capture
a wide range of semantically diverse temporal patterns [6]
and enable the synthesis of verifiable robot behaviors with
safety guarantees. However, systems that can ground natural
language commands with diverse temporal patterns have lim-
ited spatial reasoning capability [7, 8, 9].

To achieve the best of both worlds, we introduce a modular
system that can ground spatiotemporal navigation commands
for robots. Our language grounding system Lang2LTL-2 uses
large language models (LLMs) to recognize spatial referring

2Code, datasets and videos are at: https://spatiotemporal-ground.github.io/.

Fig. 1: Our system Lang2LTL-2 grounds spatiotemporal nav-
igation commands in indoor and outdoor environments. The
spatial and temporal elements of the example commands are
highlighted in blue and red, respectively.

expressions, like “the red car to the right of the building,”
and to translate language commands to LTL task specifica-
tions, which are compatible with many planning and rein-
forcement learning algorithms [10, 11, 12, 13, 14]. Using
pretrained vision-language models (VLMs) and text embed-
ding, Lang2LTL-2 grounds referring expressions to specific
locations in novel city-scaled environments without retraining,
given a semantic database of textual and visual descriptions
of the landmarks.

We evaluated our language grounding system on a dataset
of 21,780 semantically diverse spatiotemporal commands with
1,723 spatial referring expressions and 15 temporal patterns.
We also ran an ablation study and showded that using
multimodal semantic information for spatiotemporal language
grounding outperforms using any modality alone. Finally, we
demonstrated that a mobile robot equipped with the same
system without modification could execute 50 semantically
diverse spatiotemporal commands in both indoor and outdoor
environments.

II. PRELIMINARIES

A. Large Language Models and Vision-Language Models

Large language models (LLMs) are attention-based neu-
ral networks [15] trained to maximize the probability of a
successive token given a context window. They achieve the
SoTA performance on a wide variety of natural language
processing tasks [16]. Pretrained LLMs can also produce high-
dimensional vector embedding of text. We can measure the
semantic similarity of two pieces of text by computing the
cosine similarity of their embeddings. In this work, we used
OpenAI’s GPT-4 model [17] and the text embedding API for

https://spatiotemporal-ground.github.io/


text completion and embedding, respectively, and a fine-tuned
T5-base model [18] to translate natural language commands
to temporal task specification.

Vision-language models (VLMs) are multimodal models
jointly trained on text and images [19]. They have produced
SoTA results on many language-conditioned vision tasks [20],
e.g., object detection [21, 22], image captioning [23], image
retrieval [24], and visual question answering [25]. We prompt
the GPT-4V(ision) model [26] to generate captions for images
of landmarks and objects.

B. Temporal Task Specification

Linear temporal logic (LTL) [27] is a promising candidate
as a specification language for human-centered specification
elicitation [7, 28, 29, 30], and for planning and reinforcement
learning [10, 31, 29, 14]. The syntax of LTL is defined through
the following recursive grammar:

φ := α | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2 (1)

Here α represents an atomic Boolean proposition.
φ, φ1, φ2 are any valid LTL formulas. The operators ¬
(not) and ∨ (or) are identical to propositional logic operators.
The property Xφ holds if φ holds at the next time step. The
formula φ1 U φ2 holds if φ1 holds at least until φ2 first
holds, which must happen at the current or a future time. LTL
syntax also admits abbreviated operators defined through the
compositions of the primitive operators. In this work, we use
the operators ∧ (and), F (read “finally” or “eventually”), and
G (read “globally” or “always”). Fφ specifies that the formula
φ must hold at least once in the future while Gφ specifies that
φ must always hold.

C. Task Execution for Temporal Task Specification

A linear temporal logic (LTL) formula can be transformed
to a Büchi automaton [32, 33]. State transitions in the environ-
ment induce state transitions in the automaton, so we can track
task progress by tracking automaton state transitions. A policy
can be computed on the product MDP of the automaton and
the environment MDP. Our system is compatible with many
planning and reinforcement learning algorithms that solve LTL
task specification [10, 11, 34, 12, 13, 14].

III. PROBLEM DEFINITION

Our system Lang2LTL-2 receives a natural language ut-
terance u from users that specifies a navigation task in an
environment modeled as ⟨S,A, T ⟩, where S and A represent
the robot’s states and actions, and T (s, a) → s′ captures the
transition dynamics. In this work, we consider navigational
actions that transition a robot from one location to another in
the environment represented as a semantic map. We assume
the robot has access to a semantic database D = {p : (z, f)},
where p is a proposition that uniquely represents a landmark
in the environment, z encodes the semantic information of
the landmark, and f : S → {0, 1} is a Boolean-valued
function that determines the true value of the proposition in
a given state. The semantic information of a landmark can

Fig. 2: An example shows an input spatiotemporal navigation
command (the spatial and temporal elements are highlighted
in blue and red, respectively), an output LTL formula whose
propositions are grounded to physical landmarks, and an
execution trajectory in the environment.

be a textual description, including its name, amenity, street
address, etc, an image, or both. Lang2LTL-2 translates the
input command to a linear temporal logic (LTL) formula φ
whose propositions are grounded to landmarks in the real
world. We assume the robot can track its state in a semantic
map and has access to an automated planner that, given an
LTL expression as task specification, produces a trajectory in
the semantic map. Many planning and reinforcement learning
algorithms [10, 11, 12, 13, 14] are compatible with LTL task
specification. We use the AP-MDP planner by Oh et al. [12].

IV. LANG2LTL-2: SPATIOTEMPORAL LANGUAGE
GROUNDING

We approach the problem of spatiotemporal language
grounding with a modular design, where we extract spatial
referring expressions and translate temporal commands using
large language models, as well as ground referring expressions
to physical landmarks using a vision-language model and text
embedding. Our system Lang2LTL-2 produces a grounded
temporal task specification incorporating the grounded refer-
ring expressions and the spatial relations. Figure 3 shows an
overview of the full system.

A. Spatial Referring Expression Recognition (SRER)

The spatial referring expression recognition (SRER) module
identifies spatial referring expressions in a given language
command. Referring expressions (REs) are noun phrases,
pronouns, and proper names that refer to some entity in an
environment, such as landmarks and objects [35]. In this work,
we only consider noun phrases and proper names and leave
the coreference resolution problem to future work. Spatial
referring expressions (SREs) are phrases where referring ex-
pressions are connected by a spatial relation. For example, in
the language command, “Go to the red car to the right of the



Fig. 3: System Overview: yellow blocks represent the input
and output of the system; modules are in blue blocks; green
blocks represent pretrained or fine-tuned models.

bakery.” The SRE “the red car to the right of the bakery”
contains two REs, “the red car” and “the bakery,” termed
the figure ef and the ground eg , respectively, by Landau and
Jackendoff [36]. The figure ef and the ground eg are connected
by the spatial relation r “in front of.” We define a set R of
19 diverse spatial relations, such as near, in front of, behind,
on the left of, on the right of, between, and four cardinal
directions. The SRER module extracts referring expressions
and their spatial relations from a spatiotemporal language
command by prompting an LLM. We use GPT-4 [17]). The
output of the SRER module is a spatial predicate denoted
by {r : (ef , eg)}. Please see supplementary materials for the
prompt used for SRER as well as the complete list of spatial
relations.

B. Referring Expression Grounding (REG)

To ground the referring expressions (REs) ef and eg to
physical landmarks in the environment, we use a multimodal
semantic database with textual and visual descriptions of land-
marks. The REG module is important for identifying possible
candidates for each RE, especially when the environment
contains multiple similar landmarks or objects. We prompt a
pretrained vision-language model (VLM) to generate captions
of images with the question, “What is the most obvious object
in this image?” In this work, we use GPT-4V(ision) [26]. We
then use an LLM to generate text embeddings for the image
captions, the textual descriptions of landmarks in the semantic
database, and the query REs (i.e., ef and eg) extracted from
the language command. Finally, we use the cosine similarity
between text embeddings to find the landmarks that best
matches the query REs.

Let gcaption : i → c be the function that generates a caption
c for image i parameterized by the weights of the VLM,
and gembed : t → Rn be the function that computes an n-
dimensional embedding of a text string parameterized by the

weights of the LLM. The cosine similarity score is defined as
follows,

score(ef/g, z) =
gembed(ef/g)

T gembed(z)

||gembed(ef/g)|| · ||gembed(z)||
, (2)

where we replace z = gcaption(z) if the semantic information
z of the landmark is an image, and the subscript f/g denotes
the variable is for the figure ef or the ground eg .

We also explored using CLIP’s text and image encoders [19]
to encode text and images then use cosine similarity of
embeddings to find the best matching landmark for a query
RE. However, we discovered that the gap between the text
and image embedding spaces is large for the pretrained CLIP
model. Liang et al. [37] documented this phenomenon in more
detail. Instead of training another neural network to align the
the text and image embedding spaces, we first use a pretrained
VLM to transcribe images to text then work solely in the text
embedding space.

C. Spatial Predicate Grounding (SPG)

After grounding the figure ef and the ground eg to candidate
landmarks, we perform spatial predicate grounding (SPG) to
identify the most likely location of the figure given the ground
and the spatial relation r. We assume that human users give
commands with respect to the robot’s initial location. For each
spatial referring expression (SRE), we rank all the candidate
spatial predicates {r : (ef , eg)} based on the product of
the similarity scores computed by REG for the grounding
landmarks of ef and eg . To validate each candidate spatial
predicate, we first compute a ground vector from eg to the
robot, which serves as an anchor for computing the range
where ef should lie. We then compute a figure vector from eg
to ef . Depending on the spatial relation, we compute a range
where the figure vector should lie based on the ground vector.
Figure 4 illustrates the ground and the figure vectors for the
SRE “the red car to the right of the bakery.”

e∗f = argmax
pf :(zf , )∈D,pg:(zg, )∈D

score(ef , zf ) · score(eg, zg) (3)

Fig. 4: An illustration of the ground and the figure vec-
tors, depicted as the green and the red arrow, respectively,
computed by the spatial predicate grounding (SPG) module
(Section IV-C) to resolve the spatial referring expression “the
red car to the right of the bakery.”



For each known spatial relation r ∈ R, we specify a set
of rules to validate a pair of candidate figure and ground.
In the example of “the red car to the right of the bakery”
the spatial relation “to the right of” means the figure vector
must lie within the half circle between the ground vector and
180 degrees from the ground vector. Please see supplementary
materials for the definition of all spatial relations. We also
specify a distance threshold in meters between a figure and
the ground to eliminate candidate figures too far from the
ground. To resolve an unseen spatial relation, we use LLM
text embedding and cosine similarity to find the best matching
known spatial relation r ∈ R.

D. Lifted Translation (LT)

After the SRER module extracts all the spatial referring
expressions (SREs) from a given command, we transform
it into a lifted command by substituting the SREs with
symbols, which are grounded to physical landmarks by the
REG (Section IV-B) and the SPG (Section IV-C) modules.
For example, the input command “Go to the red car to the
right of the bakery” is transformed to a lifted command “Go
to a” where the symbol a substitutes the SRE “the red car to
the right of the bakery.” We then translate the lifted command
to a lifted LTL formula compatible with many planning and
reinforcement learning algorithms [10, 11, 12, 13, 14]. We
evaluate the following models for lifted translation.

Fine-tuned LLM: Liu et al. [8] tested four models that use
LLMs for lifted translation. The T5-Base (220M parameters)
model [18] fine-tuned on the semantically diverse dataset they
collected overperformed the fine-tuned GPT-3 [38], the Prompt
GPT-3 [38] and the Prompt GPT-4 [17] models. Thus we
use their best performing model fine-tuned T5-Base through
HuggingFace’s Transformer library [39].

Retrieval Augmented Generation (RAG): We evaluate
retrieval augmented generation (RAG) which dynamically
constructs a prompt to an LLM based on the query [40] for
lifted translation. To translate a lifted command to a lifted
LTL formula with RAG, we use cosine similarity of text
embeddings to find semantically similar commands from the
lifted dataset collected in [8], then use these commands and
their corresponding LTL formulas as in-context examples to
query GPT-4 [17]. We test varying numbers of in-context
examples.

V. EVALUATION OF LANGUAGE GROUNDING

We conduct three sets of evaluation of our spatiotemporal
language grounding system: 1) a modular evaluation, where
we test the performance of individual modules introduced in
Section IV; 2) a full system evaluation, where we evaluate the
final output of our system; and 3) an ablation study of the text
and the image modalities.

A. Dataset

Our evaluation uses four city-scaled environments with an
increasing number of landmarks, i.e., 9, 34, 44, and 175. The
landmarks are described by text from OpenStreetMap [41]

(e.g., names, street addresses, amenities, and GPS coordi-
nates, etc.) and images from Google StreetView [42]. Having
landmarks described by both modalities helps evaluate if
the referring expression grounding (REG) module can use a
proper modality to correctly ground referring expressions to
landmarks.

To obtain semantically diverse spatiotemporal navigation
commands, we first collect 1,723 spatial referring expressions
(SREs) with respect to the robot’s initial location from human
users, then substitute the SREs in the 1,089 lifted natural
language commands provided by [8]. The lifted commands
cover 15 temporal patterns for common robotic tasks, each
with 20 to 38 lifted commands. For example, given the lifted
command “Walk to a then to b”, we can substitute the symbols
a and b with the SREs “the vegan restaurant west of the
bakery” and “the red car,” respectively, to obtain the grounded
natural language command “Walk to the vegan restaurant west
of the bakery, then to the red car.” We construct 21,780
unique spatiotemporal language commands using five seeds to
sample SREs for substitution. The commands contain varying
numbers of SREs ranging from one to five.

B. Modular Evaluation

We first evaluate each module introduced in Section IV on
the semantically diverse dataset introduced in Section V-A. All
results are averaged over five seeds.
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(b) REG Accuracy vs. RE Complexity

Fig. 5: Figure 5a shows the accuracies of the spatial referring
expression recognition (SRER) module as the complexity of
utterances (measured by the number of SREs in an utterance)
increases. Figure 5b shows the accuracy of the referring
expression grounding (REG) module as the complexity of REs
(measured by string length) increases.



TABLE I: Modular Performance

Module Accuracy

City 1 (9 landmarks) City 2 (34 landmarks) City 3 (44 landmarks) City 4 (175 landmarks) Average

SRER 99.45± 0.12% 99.43± 0.26% 99.56± 0.63% 99.39± 0.21% 99.46± 0.34%

REG
Top-1 99.68± 0.72% 97.98± 1.07% 88.74± 2.14% 78.35± 1.97% 91.19± 8.84%
Top-5 100.00± 0.00% 100.00± 0.00% 99.56± 0.24% 99.15± 0.34% 99.68± 0.41%
Top-10 100.00± 0.00% 100.00± 0.00% 99.70± 0.17% 99.98± 0.05% 99.92± 0.15%

SPG 100.00± 0.00% 100.00± 0.00% 99.53± 0.33% 99.35± 1.46% 99.72± 0.75%

LT
T5 99.45± 0.00% 99.45± 0.00% 99.45± 0.00% 99.45± 0.00% 99.45± 0.00%

RAG-10 69.33± 0.25% 70.34± 0.13% 69.65± 0.58% 70.39± 0.84% 69.93± 0.62%
RAG-50 83.79± 0.06% 83.93± 0.12% 83.75± 0.52% 83.93± 0.65% 83.85± 0.33%
RAG-100 88.20± 0.58% 88.25± 1.04% 87.79± 0.39% 87.70± 0.13% 87.98± 0.54%

Spatial Referring Expression Recognition (SRER): We
evaluate the LLM’s ability to extract the correct number of
spatial referring expressions (SREs) from a natural language
command and correctly identify their structures described in
Section IV-A, i.e., {r : (ef , eg)} with the spatial relation r, the
figure ef and the ground eg . As shown in Table I, the SRER
module can reliably recognize SREs and their corresponding
spatial predicates in language commands from unseen envi-
ronments. Figure 5a further demonstrates that SRER achieves
nearly perfect performance across commands with varying
numbers of SREs. Occasionally, when a language command
contains five SREs of large lengths, the SRER module may
fail to parse an SRE to the correct spatial predicate.

Referring Expression Grounding (REG): We evaluate the
ability of the REG module to ground referring expressions,
i.e., figures and grounds, to the correct physical landmarks
described by text and images in the semantic map. We observe
in Table I that the Top-1 accuracy decreases as the number
of landmarks increases from City 1 to City 4. With more
landmarks, there are more instances from the same category
that share similar textual or visual features. For example,
there may be multiple cafe shops or red bicycles in a large
environment. However, as we increase the number of top can-
didates from 1 to 10, the REG module achieves nearly perfect
performance. Since REG provides candidate groundings of
figures and grounds to the SPG module (evaluated next), we
hypothesize that as long as the correct landmark is among
the top candidates, our system can still ground to the correct
landmarks. We use ten as the number of candidate groundings
for REG. Figure 5b shows that as the complexity of REs
increases, the REG module consistently achieves near-perfect
Top-10 accuracies. These results align with that reported
by Liu et al. [8].

Spatial Predicate Grounding (SPG): Our evaluation of the
SPG module assesses whether the correct figure landmarks
can be identified using the spatial reasoning described in
Section IV-C. As shown in Table I, SPG performs uniformly
well across all environments. The few failure cases are due
to instances where the figure and the ground landmarks are
far apart, and a closer landmark is available to serve as the
ground landmark.

Lifted Translation (LT): Liu et al. [8] conducted com-
prehensive evaluation of generalization of various finetuned
and prompting LLM for lifted translation. We compare the
accuracies of the best-performing model in Liu et al. [8], i.e.,
T5-base fine-tuned on a large composted dataset, and retrieval
augmented generation (RAG) [40] with varying numbers of in-
context examples. Fine-tuned T5-base model achieves high ac-
curacies across all environments, which means the composed
dataset constructed by [8] covers most temporal patterns we
consider in this work. For RAG, we vary the number of in-
context examples from 10 to 100, the maximum number of
tokens allowed by GPT-4 [17]. We observe that as the number
of examples increases, the accuracy increases but is lower than
that of the fine-tuned T5 model. Thus, we use the fine-tuned
T5-base model for lifted translation in the full system. For cost
effective reasons, we average the RAG results over two seeds
per city.

C. Full System Evaluation and Ablation Study

We test the overall performance of our language grounding
system that takes a spatiotemporal navigation command as
input and produces an LTL formula whose propositions are
grounded to physical landmarks in the environment. To eval-
uate the effectiveness of multimodality semantic information
for language grounding, we conduct an ablate study where we
only use one modality, i.e., text or images, in the referring
expression grounding (REG) module.

The full system using both modalities significantly outper-
forms the image-only system because images alone often do
not provide enough information, especially when there are
distractor objects. It outperformed the text-only system by
more than 10%. The margin is much smaller than that with
the image-only system because our full system essentially uses
textual description to ground REs after converting images to
text. Still, the additional visual features provided by images
can further disambiguate similar landmarks. For example,
colors can help disambiguate a red and a yellow bicycle.
In reality, detailed textual descriptions of landmarks are not
always available, e.g., “the red brick building,” but can be
easily extracted from images by querying a pretrained VLM
for suitable image captions. The accuracy of the spatial predi-
cate grounding (SPG) module when given the top-10 candidate
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Fig. 6: This graph depicts the average accuracies of spatiotem-
poral language grounding systems using different modalities
across four environments and five seeds per environment.

groundings from the referring expression grounding (REG)
module is 97.26±2.07%. It supports our hypothesis that if the
correct RE grounding is among the top candidates, SPG can
identify the correct figure landmark based on spatial reasoning.
Note that the text-only system is the same as Lang2LTL [8].
Liu et al. [8] showed that Lang2LTL outperforms Code-
as-Policies [43], a prominent system that grounds natural
language instructions to Python code directly executable on
robots.

VI. ROBOT DEMONSTRATION

To demonstrate the ability of the Lang2LTL-2 grounding
system to enable execution of spatiotemporal commands, we
deploy the same system without modification at the task
planning level on a quadruped robot Spot [44] in an indoor
and an outdoor environment. These environments contain
nine and five objects, respectively, with multiple objects and
landmarks that have similar textual or visual features, e.g.,
tables, couches, buildings, dumpsters, and cars.

We use Spot’s GraphNav software to build a semantic
map of the environment and capture images of landmarks
and objects of interest. For the outdoor environment, we
additionally download textual descriptions of landmarks in
the region from OpenStreetMap [41]. We only use images for
indoor experiments. Given a grounded LTL task specification
output by our language grounding system, we use the AP-
MDP planner [12] to produce a sequence of actions that
traverse the semantic map. We execute 50 semantically diverse
spatiotemporal natural language commands on the physical
robot. With the formal safety guarantee offered by AP-MDP
planner for LTL task specification, the robot is able to abort
the execution, if a given task is infeasible. Please see supple-
mentary materials for the complete list of commands.

VII. RELATED WORK

A. Grounding Spatial Commands for Robots

SLOOP [3] is a system that grounds spatial commands in
partially observable environments by using the spatial relations

between a target object and multiple landmarks to construct
an initial belief for a POMDP planner. LanguageRefer [45]
is a learned transformer-based model that takes as inputs a
spatial language command, a 3D point cloud of the scene,
and bounding boxes of objects, then predicts the target object.
RoboHop [46] builds a topological map of the environment
with image segments as nodes. Like our work, RoboHop uses
an LLM to extract referring expressions (REs) from a language
command. Then it uses a VLM to ground REs to nodes in the
topological map.

B. Grounding Temporal Commands for Robots

Linear temporal logic (LTL) [27] is a mathematically precise
language that can specify robotic tasks and provide satisfaction
guarantees, especially for long-horizon, temporally-extended
tasks. Early work of using LTL for temporal command ground-
ing was limited to structured language [47]. Gopalan et al. [7]
trained a Seq2Seq network [48] on natural language and LTL
pairs in every new environment to ground language commands
for navigation and manipulation. Like our work, Berg et al.
[28] and Hsiung et al. [49] first translated commands to lifted
LTL formulas then grounded the propositions to landmarks or
objects but used a Seq2Seq network with limited capabilities.

To mitigate the lack of training data, Pan et al. [50] used an
LLM to paraphrase structured language commands constructed
from algorithmically generated LTL formulas. Patel et al. [51]
and Wang et al. [52] proposed weakly supervised methods
that use executed trajectories instead of LTL annotations to
guide language grounding. Similarly, Lang2LTL [8] is a mod-
ular system that uses LLMs to ground temporally extended
navigation commands in indoor and outdoor environments
without retraining, given a text-based semantic database. How-
ever, Lang2LTL cannot ground spatial referring expressions
or landmarks with visual descriptions. Our system improves
upon Lang2LTL by incorporating spatial reasoning and using
a vision-language model (VLM) to process images.

C. Grounding Spatiotemporal Commands for Robots

Language commands from existing works of indoor [1, 2, 3,
53] and outdoor [4, 5] navigation are rich in spatial relations,
but lack diverse temporal patterns. Lang2LTL-2 considers lan-
guage commands containing 15 temporal patterns commonly
used in robotics [6]. LM-Nav [5] uses an LLM to extract
a sequence of referring expressions (REs) from a navigation
command, then a VLM to ground the REs to images of phys-
ical landmarks. LM-Nav only grounds language commands
of sequenced visit type defined in [6]. VLMaps [54] fuses
pretrained vision-language features with depth information to
construct a spatial map of the environment then directly indices
a sequence of spatial referring expressions (SREs) extracted by
an LLM in the map. LIMP [53] uses RGB-D information, an
LLM and a VLM to construct a 3D semantic map conditioned
on the input language for motion planning to solve indoor
mobile manipulation tasks. It translates free-form language
commands to one of three temporal patterns using an LLM.
An additional advantage of our system is its ability to ground



REs that are not easily represented by visual description, e.g.,
generic referring expressions like “the vegan restaurant,” and
proper names like “Wildflour” (the name of a bakery) by
using additional textual description from OpenStreeMap [41]
in grounding city-scaled navigation commands.

VIII. CONCLUSION

We propose a modular system that consists of pretrained
large language models and a pretrained vision-language model
to ground spatiotemporal navigation commands to landmarks
described by text and images in a semantic map of novel
indoor and outdoor environments. We evaluate the individual
modules and the full language grounding system on a se-
mantically diverse dataset of 21,780 spatiotemporal navigation
commands in novel city-scaled environments. Our system
achieves 93.53% accuracy outperforming the previous SoTA.
An autonomous robot with access to a semantic map and
position tracking can use the same system without modifica-
tion to follow spatiotemporal navigation commands in novel
indoor and outdoor environments. We envision incorporating
interaction with human users to further improve spatiotemporal
language grounding.
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