
RoboEXP: Action-Conditioned Scene Graph via

Interactive Exploration for Robotic Manipulation

Hanxiao Jiang1 Binghao Huang1 Ruihai Wu3 Zhuoran Li4

Shubham Garg2 Hooshang Nayyeri2 Shenlong Wang1 Yunzhu Li1
1University of Illinois Urbana-Champaign 2Amazon 3Peking University 4National University of Singapore

Pick

Condiment

Pick

Burger

After Exploitation with SG

Action1 Action2

Action3 Action4

After ExplorationInitial State

(b
)

E
x
p
lo

it
a
ti
o
n
 (

L
e
v
e
ra

g
e
 S

c
e
n
e
 G

ra
p
h
)

(a
)

E
x
p
lo

ra
ti
o
n
 (

B
u
ild

 S
c
e
n
e
 G

ra
p
h
)

Pick Plate

Pick Coke

Scene Graph(SG)

Fig. 1: Interactive Exploration to Construct an Action-Conditioned Scene Graph (ACSG) for Robotic Manipulation. (a) Exploration:
The robot autonomously explores by interacting with the environment to generate a comprehensive ACSG. This graph is used to catalog
the locations and relationships of items. (b) Exploitation: Utilizing the constructed scene graph, the robot completes downstream tasks by
efficiently organizing the necessary items according to the desired spatial and relational constraints.

Abstract—We introduce the novel task of interactive scene ex-
ploration, wherein robots autonomously explore environments and
produce an action-conditioned scene graph (ACSG) that captures
the structure of the underlying environment. The ACSG accounts
for both low-level information (geometry and semantics) and
high-level information (action-conditioned relationships between
different entities) in the scene. To this end, we present the Robotic
Exploration (RoboEXP) system, which incorporates the Large
Multimodal Model (LMM) and an explicit memory design to
enhance our system’s capabilities. The robot reasons about what
and how to explore an object, accumulating new information
through the interaction process and incrementally constructing

the ACSG. Leveraging the constructed ACSG, we illustrate the
effectiveness and efficiency of our RoboEXP system in facilitating
a wide range of real-world manipulation tasks involving rigid,
articulated objects, nested objects, and deformable objects. Project
Page: https://jianghanxiao.github.io/roboexp-web/

I. INTRODUCTION

Imagine a future household robot designed to prepare

breakfast. This robot must efficiently perform various tasks

such as conducting inventory checks in cabinets, fetching food

from the fridge, gathering utensils from drawers, and spotting

https://jianghanxiao.github.io/roboexp-web/

leftovers under food covers. Key to its success is the ability to

interact with and explore the environment, especially to find

items that aren’t immediately visible. Equipping it with such

capabilities is crucial for the robot to effectively complete its

everyday tasks.

Robot exploration and active perception have long been

challenging areas in robotics. Various techniques have been

proposed, including information-theoretic approaches [1–7],

frontier-based methods [8–10], imitation learning [11, 12] and

reinforcement learning [13–16]. Nevertheless, previous research

has primarily focused on exploring static environments by

merely changing viewpoints in a navigation setting or has been

limited to interactions with a small set of object categories,

such as drawers, or a closed set of simple actions like pushing

[17].

In this work, we investigate the interactive scene exploration

task, where the goal is to efficiently identify all objects,

including those that are directly observable and those that

can only be discovered through interaction between the robot

and the environment (see Fig. 1). Towards this goal, we present

a novel scene representation called action-conditioned 3D scene

graph (ACSG). Unlike conventional 3D scene graphs that

focus on encoding static relations, ACSG encodes both spatial

relationships and logical associations indicative of action effects

(e.g., opening a fridge will reveal an apple inside). We then

show that interactive scene exploration can be formulated as

a problem of action-conditioned 3D scene graph construction

and traversal.

Tackling interactive scene exploration poses challenges: how

can we reason about which objects need to be explored, choose

the right action to interact with them, and maintain knowledge

about our exploration findings? With these challenges in mind,

we propose a novel, real-world robotic exploration framework,

the RoboEXP system. At the core of our system is a large

foundational model-powered instantiation of action-conditioned

3D scene graph. Specifically, our framework consists of four

modules: perception, memory, decision-making, and action,

as shown in Fig. 3. To address the challenge of perceiving

what is present in the scene, our perception module utilizes

GroundingDINO [18], Segment Anything in High Quality

(SAM-HQ) [19, 20], and CLIP [21] to detect objects or parts

and extract their language-embedded semantic features. Our

decision-making module employs the rich commonsense

knowledge contained in large multimodal models, such as

GPT-4V [22, 23], to assist in selecting which objects to explore

and what actions to take, and in validating their plausibility.

Once the decision-making module has chosen a skill, our

action module is then activated to follow the plans formulated

by the prior modules. During the entire physical interaction

process, our memory model—which maintains the action-

conditioned scene graph—will be continuously updated to

preserve the scene’s knowledge for future exploration and

exploitation. Despite its strong capacity, our hardware system

is simple—it requires only a single RGB-D wrist camera as

sensor input and uses a single robot arm for actions.

RoboEXP can handle diverse exploration tasks in a zero-

shot manner, constructing complex action-conditioned 3D

scene graph in various scenarios, including those involving

obstructing objects and requiring multi-step reasoning (Fig. 2).

We evaluate our system across various settings, spanning simple,

single-object scenarios to complex environments, demonstrating

its adaptability and robustness. The system also effectively

manages different human interventions. Moreover, we show

that our reconstructed action-conditioned 3D scene graph

demonstrates strong capacity in performing multiple complex

downstream tasks. Action-conditioned 3D scene graph advances

LLM/LMM-guided robotic manipulation and decision-making

research [24, 25], extending their operation domain from

environments with known or observable objects to complicated

environments with unknown or unobserved ones. To our

knowledge, this is the first of its kind.

Our contributions are as follows: i) we propose action-

conditioned 3D scene graph and introduce the interactive

scene exploration task to address the challenging interaction

aspect of exploration; ii) we develop the RoboEXP system,

capable of exploring complicated environments with unseen

objects in a wide range of settings; iii) through extensive

experiments, we demonstrate our system’s ability to construct

complex and complete action-conditioned 3D scene graph,

demonstrating significant potential for various manipulation

tasks. Our experiments involve rigid and articulated objects,

nested objects like Matryoshka dolls, and deformable objects

like cloth, showcasing the system’s generalization ability across

objects, scene configurations, and downstream tasks.

II. RELATED WORKS

Scene Graphs [26, 27] represent objects and their re-

lations [28–30] in a scene via a graph structure. Previous

studies generate scene graphs from images [31, 27, 32] or

3D scenes [33], and further with the assistance of large

language models (LLMs) [34, 35]. While previous works model

scene graphs in static 2D or 3D scenes, we generate action-

conditioned scene graphs that integrate actions as core elements,

depicting interactive relationships between objects and actions.

Our work is also related to Neuro-Symbolic Representations

that integrate neural networks with symbolic reasoning. Prior

works explored understanding scenes and describing robotic

skills in symbolic texts to interpret demonstrations [36, 37],

ground abstract actions for robotic primitives [38] and generate

action plans [39–44]. Our proposed framework also constructs

symbolic representations of the environment, but in the form

of action-conditioned scene graphs for robotic manipulation.

Robotic Exploration aims to autonomously navigate [9, 45–

49, 11, 50, 51], interact with [12, 52, 52–56], and gather

information [57–59] from environments it has never encoun-

tered before. The primary guiding principle behind robotic

exploration is to reduce the uncertainty of the environment

[60, 5, 45, 6, 7, 61], making uncertainty quantification key

for robotic exploration tasks. Curiosity-driven exploration has

recently emerged as a promising approach, showing effective

results in various contexts [16, 62–64]. Recently, exploration

has also been studied in the context of manipulation [65–72],

(a
)

R
e
a
l
R

o
b
o
t

(b
)

L
o
w

-L
e
v
e
l
M

e
m

o
ry

Table

Cabinet

Cabinet

Condiment

Drawer Handle

Tape(c
)

H
ig

h
-L

e
v
e
l
M

e
m

o
ry

Pick

Drawer Handle

Door Handle

Door Handle

Open

Open

Open

Open

Banana

Inside

Inside

Belong

Belong

Object Node

Action Node

t

On

Belong

Belong

Fig. 2: Action-Conditioned 3D Scene Graph from Interactive Scene Exploration. To illustrate the construction process of our ACSG in
the interactive scene exploration, we depict a scenario wherein a robot arm explores a tabletop scene containing two cabinets and a condiment
obstructing the left door. (a) The robot arm actively interacts with the scene, completing the interactive scene exploration process. (b) We
showcase the corresponding low-level memory in our ACSG, which represents the geometry and semantic information of the scene. The small
graph within each visualization represents a segment of the final scene graph. (c) We present the high-level memory of our action-conditioned
scene graph. The graph reveals that picking up the condiment serves as a precondition for opening the door, and opening the bottom drawer
allows the observation of the concealed tape and banana.

aiming to better understand the scene by changing the state of

the environment. Our work introduces a new active exploration

strategy for manipulation, uniquely defining a novel scene

graph-guided objective to guide the exploration process. Our

work is also related to Active Perception, which actively

selects actions for an agent to help it perceive and understand

the environment [1, 73]. Unlike passive perception, actions

offer more flexibility, such as control over viewpoints [2–

4, 74], sensor configurations [75, 15], or adjustments to

environmental configurations [76]. It can also reveal certain

scene properties that cannot be perceived in a passive manner,

such as dynamic parameters [16, 77] or articulation [78, 68, 79].

Our work falls into the category of actively exploring the

environment to reveal what’s inside or underneath objects.

Differing from most previous active perception efforts, which

are driven by handcrafted rules [80], information gain [81, 82],

or reinforcement learning [16, 83], our approach is guided

by grounding the commonsense knowledge encoded in a

LLM/LMM into an explicit scene graph representation.

Language Models for Robotics. Large language models

(LLMs) [84–86] and large multimodality models (LMMs) [22,

23] are bringing overwhelming influence into the robotics

field, for their strong capacity in common-sense knowledge

and task-level planning. Previous studies have harnessed the

common-sense knowledge of such large models to generate

action candidates [87–89] and action sequences for task

planning [90, 86, 91, 92], and generate code for robotic control

and manipulation [93, 24, 94]. More recently, VILA [25]

utilized GPT-4V [22, 23] for vision-language planning. In our

RoboEXP system, we leverage GPT-4V for decision-making

in two crucial roles to select and verify actions. Moreover,

instead of memorizing everything using large models in a brute

force way, our system employs explicit memory to enhance

the decision-making process.

III. PROBLEM STATEMENT

We unfold this section with an introduction of action-

conditioned 3D scene graph, a novel scene representation

illustrating interactive object relationships (Sec. III-A). We then

formulate interactive scene exploration as an action-conditioned

3D scene graph construction and traversal problem (Sec. III-B).

A. Action-Conditioned 3D Scene Graph

An action-conditioned 3D scene graph (ACSG) is an ac-

tionable, spatial-topological representation that models objects

and their interactive and spatial relations in a scene. Formally,

ACSG is a directed acyclic graph G = (V,E) where each

node represents either an object (e.g., a door) or an action

Low-level memory

Environment

(c) Decision-Making Module

High-level memory

Soft Gripper

RealSense D455

Xarm 7

(a) Perception Module

2
D

-to
-3

D
 In

s
ta

n
c
e
 F

u
s
io

n

Multi-View

(d) Action Module (b) Memory Module

Proposer Verifier

‘‘Open the Door’’
‘‘Open the Drawer’’

‘‘Open the Drawer’’
‘‘Open the Drawer’’

‘‘No Obstruction’’
‘‘No Obstruction’’

‘‘No Obstruction’’
‘‘No Obstruction’’

... ...

RGBD

Fig. 3: Overview of Our RoboEXP System. We present a comprehensive overview of our RoboEXP system, comprised of four modules.
(a) Our perception module takes RGBD images as input and produces the corresponding 2D bounding boxes, masks, object labels, and
associated semantic features as output. (b) The memory module seamlessly integrates 2D information into the 3D space, achieving more
consistent 3D instance segmentation. Additionally, it constructs the high-level graph of our ACSG through the merging of instances. (c) Our
decision-making module serves dual roles as a proposer and verifier. The proposer suggests various actions, such as opening doors and
drawers, while the verifier assesses the feasibility of each action, considering factors like obstruction. (d) The action module executes the
proposed actions, enabling the robot arm to interact effectively with the environment.

(e.g., open), and edges E represent their interaction relations.

The object node oi = (si,pi) ∈ V encodes the semantics and

geometry of each object (e.g., the semantic embedding of a

fridge si, and its shape in the form of a point cloud pi), whereas

the action node ak = (ak,Tk) ∈ V encodes high-level action

type ak and low-level primitives Tk to perform the actions.

Between the nodes are edges encoding their relations, which we

categorize into four types: 1) between objects eo→o (e.g., the

door handle belongs to the fridge), 2) from objects to actions

eo→a (e.g., toy can be picked up), 3) from action to objects

ea→o (e.g., a banana can be reached if we open the cabinet),

or 4) from one action to another ea→a (e.g., the cabinet can

be opened only if we move away the condiment). Our action-

conditioned 3D scene graph greatly enhances existing 3D scene

graphs, as it explicitly models the action-conditioned relations

between objects. Fig. 2 depicts a complete action-conditioned

3D scene graph of a tabletop scene.

One advantage of our interaction-aware scene graph lies in

its simplicity for retrieving and taking actions on an object.

Regardless of how complicated the scene is, given our scene

graph and a target object, an agent merely needs to sequentially

execute all the actions on the paths from the root to the object

node in a topological order to retrieve the object. For example,

in Fig. 2, to reach the tape inside a cabinet whose door is

blocked by a condiment, according to the graph, one simply

needs to: 1) pick up the condiment on the table that blocks the

cabinet door, and 2) open the cabinet through the door handle.

B. Interactive Exploration

This subsection describes how we can construct a complete

action-conditioned scene graph of a real-world scene. This is a

challenging problem due to partial observability. For instance,

a banana cannot be populated without opening the cabinet. To

solve this task, we formulate the scene graph construction as

an active perception and exploration problem using POMDP-

inspired notations. Formally, at each time t, based on our past

graph estimation Gt−1, and past sensor observations Ot−1,

our agent takes an action At, which causes the environment

to transition to a new state, and the agent receives a new

observation Ot, which is used to update its current inferred

graph Gt. This update might include adding new nodes to

the graph or updating the state of an existing node. We will

then continue with exploration and keep updating the set of

remaining unexplored nodes U ⊂ V (see Algorithm 1).

The goal of the exploration is simple: discover and explore

all the nodes of the scene graph in as little time as possible.

Towards this, we formulate a reward function with three terms:

Rt = Rt

graph +Rt

explore +Rt

time

where Rt

graph = |Vt| − |Vt−1| is the graph construction term,

which promotes our agent to discover as many nodes as possible

to the graph, Rt

explore = max(0, |Ut−1| − |Ut|) gives positive

reward to actions that reduce unexplored node set, which

prioritize the agent to explore previously unexplored nodes,

and immediate reward Rt

time = −λ, 0 < λ < 1 is a negative

Algorithm 1 Interactive Exploration

1: input: O0, G0 = (V0,E0),U0 ← V0

2: while |Ut−1| ≠ 0 do

3: if choose object oi ∈ Ut−1 then % explore object

4: add spatial relations % memory

5: obtain action a to explore oi % decision-making

6: if action a /∈ Vt−1 then

7: Vt,Ut = Vt−1 ∪ {a},Ut−1 ∪ {a} % add node

8: Et = Et−1 ∪ {eoi→a} % add edge

9: Ut = Ut \ oi % mark as explored

10: end if

11: else choose action ak ∈ Ut−1

12: if no obstruction then % decision-making

13: take action ak % action

14: obtain new observation Ot % perception

15: if found new objects O ̸⊂ Vt−1 then

16: Vt,Ut = Vt ∪{O},Ut−1 ∪{O} % add nodes

17: Et = Et ∪ {eak→O} % add edges

18: Ut = Ut \ ak % mark as explored

19: end if

20: else

21: add action preconditions % memory

22: end if

23: end if

24: end while

25: output: Gt % final scene graph

time reward that optimizes the time efficiency and allows the

exploration to terminate when there is no more node to explore.

Intuitively, to maximize this reward at each discrete times-

tamp, we should prioritize exploring the unexplored nodes in

the current scene graph that are likely to lead to the discovery

of new nodes (e.g., opening a cabinet that has not been opened,

or lifting a piece of clothing that might cover a small object).

The key challenge lies in how we can perceive the objects in

the scene, infer possible actions and their relations from the

sensory data, and take actions with the current scene graph. In

the next section, we will comprehensively describe our system

implementation to achieve this goal.

IV. METHOD

In this section, we outline the structure of our RoboEXP

system, including perception, memory, decision-making, and

action modules, in Sec. IV-A. We then discuss our system’s

design for the interactive scene exploration task in Sec. IV-B,

focusing on its application in closed-loop exploration processes

that may require multi-step or recursive reasoning and handle

potential interventions.

A. RoboEXP System

To tackle the task outlined in Section Sec. III, we present our

RoboEXP system, designed to autonomously explore unknown

environments by observing and interacting with them. The

system comprises four key components: perception, memory,

decision-making, and action modules (see Fig. 3). Raw RGBD

images are captured through the wrist camera in different

viewpoints and processed by the perception modules to extract

scene semantics, including object labels, 2D bounding boxes,

segmentations, and semantic features. The obtained semantic

information is then transmitted to the memory module, where

the 2D data is merged into the 3D representation. Such 3D

information serves as a valuable guide for the decision module,

aiding in the selection of appropriate actions to further interact

or observe the environment and unveil hidden objects. The

action module is activated to execute the planned action,

generating new observations for the perception modules. This

closed-loop system ensures the thoroughness of our task in

interactive scene exploration.

Perception Module. Given multiple RGBD observations

from different viewpoints, the objective of the perception

module (Fig. 3a) is to detect and segment objects while

extracting their semantic features. To enhance generality, we

opt for the open-vocabulary detector GroundingDINO [18]

and the Segment Anything in High Quality (SAM-HQ) [19],

an advanced version of SAM [20]. For the extraction of

semantic features used in subsequent instance merging within

the memory module, we employ CLIP [21]. To obtain per-

instance CLIP features, we implement a strategy similar to

the one proposed by Jatavallabhula et al. [95]. Specifically,

we extend the local-global image feature merging approach

by incorporating additional label text features to augment the

semantic CLIP feature for each instance. Furthermore, we

exclusively focus on instance-level features, disregarding pixel-

level features, thereby accelerating the entire semantic feature

extraction process.

Memory Module. The memory module (Fig. 3b) is designed

to construct our ACSG of the environment by assimilating

observations over time. For the low-level memory, to ensure

stable instance merging from 2D to 3D, we employ a similar

instance merging strategy as presented in Lu et al. [96],

consolidating observations from diverse RGBD sources across

various viewpoints and time steps. In contrast to the original

algorithm, which considers only 3D IoU and semantic feature

similarity we additionally incorporate label similarity and

instance confidence. To enhance algorithm efficiency, we

represent low-level memory using a voxel-based representation,

which allows for more efficient computation and memory

updates. Meanwhile, given the crowded nature of objects in

our tabletop setting, we have implemented voxel-based filtering

designs to obtain a cleaner and more complete representation

of the objects for storage in our memory.

The memory module handles merging across different

viewpoints and time steps. To merge across different viewpoints,

we project 2D information (RGBD, semantic features, mask,

bounding box) to 3D and leverage the instance merging

strategy mentioned earlier to attain consistent 3D information.

Addressing memory updates across time steps presents a

challenge due to dynamic changes in the environment. For

instance, a closed door in the previous time step may be opened

by our robot in the current time step. To accurately reflect such

changes, our algorithm evaluates whether elements within our

memory have become outdated, primarily through depth tests

based on the most recent observations. This process ensures that

the memory accurately represents the environment’s current

state, effectively managing scenarios where objects may change

positions or states across different time steps.

For the high-level graph of our ACSG, the memory module

analyzes the relationships between objects and the logical as-

sociations between actions and objects. Depending on changes

in low-level memory and relationships, the memory module is

tasked with updating the graph. This involves adding, deleting,

or modifying nodes and edges within our graph.

Decision-Making Module. The primary goal of the decision

module (Fig. 3c) is to identify the appropriate object and

corresponding skill to enhance the effectiveness and efficiency

of interactive scene exploration. In the context of our task,

distinct objects may necessitate distinct exploration strategies.

While humans can easily discern the most suitable skill to

apply (e.g., picking up the top Matryoshka doll to inspect its

contents), achieving such decisions through heuristic-based

methods is challenging. The utilization of a Large Multi-Modal

Model (LMM), such as GPT-4V [22, 23], shows instrumental

in addressing this difficulty, as it captures commonsense

knowledge that facilitates decision-making.

The LMM brings commonsense knowledge to our decision-

making process and serves in two pivotal roles. Firstly, it

functions as an action proposer. Given the current digital

environment from the memory module, GPT-4V is tasked

with selecting the appropriate skill for unexplored objects

in our system. For instance, when presented with a visual

prompt of an object within a green bounding box from various

viewpoints, GPT-4V can discern the suitable “pick up” skill for

the Matryoshka doll in the environment. For unexplored objects,

our ACSG includes the attribute of whether each object node

is explored or unexplored. GPT-4V, in its role as the proposer,

also functions to assess whether the object holds value for

further exploration. If not, the corresponding node is marked

as explored, indicating that no further actions are needed.

Secondly, the LMM also serves as the action verifier. For

the proposer role, it analyzes the object-centric attributes and

doesn’t consider surrounding information when choosing the

proper skill. For example, if the proposed action involves

opening a door, the proposer alone may struggle with cases

where obstructions exist in front of the door (e.g., a condiment

bottle). To address this, we use another LMM program to verify

the feasibility of the action and identify any objects in the

scene that may impede the action based on information from

our ACSG.

In summary, the decision module, with its dual roles,

effectively guides our system to choose efficient actions that

minimize uncertainty in the environment and successfully locate

all relevant objects.

Action Module. In the action module (Fig. 3d), our primary

focus is on autonomously constructing the ACSG through

effective and efficient interaction with the environment. We

employ heuristic-based action primitives within our action

module, leveraging the geometry cues in our ACSG. These

Fig. 4: All Testing Objects. We present various objects utilized
in our work, encompassing different types of cabinets, fruits, dolls,
condiments, beverages, food items, tapes, tableware, and fabric.

primitives encompass seven categories: “open the door”, “open

the drawer”, “close the door”, “close the drawer”, “pick object

to idle space”, “pick back object”, “move wrist camera to

position”. Strategic utilization of these skills plays a pivotal

role in accomplishing intricate tasks seamlessly within our

system (more details in the Appendix).

B. Other Design in Interactive Exploration

One desiderata for robot exploration is the ability to handle

scenarios that necessitate multi-step or recursive reasoning. An

example of this is the Matryoshka doll case (Fig. 6b), which

cannot be addressed using previous one-step LLM-based code

generation approaches [25, 24]. In contrast, our modular design

allows agents to dynamically plan and adapt in a closed-loop

manner, enabling continuous LLM-based exploration based on

environmental feedback.

To manage multi-step reasoning, our system incorporates

an action stack as a simple but effective “planning” module.

Guided by decisions from the decision module, the stack

structure adeptly organizes the order of actions. For instance,

upon picking up the top Matryoshka doll, if the perception and

memory modules identify another smaller Matryoshka doll in

the environment, the decision module determines to pick it

up. Our action stack dynamically adds this pickup action to

the top of the stack, prioritizing the new action over picking

back the previous, larger Matryoshka doll. This stack structure

facilitates multi-step reasoning and constructs the system’s

logic in a deep and coherent structure.

Moreover, for the interactive scene exploration task, main-

taining scene consistency is crucial in practice (e.g., the agent

should close the fridge after exploring it). We employ a greedy

strategy returning objects to their original states. This approach

keeps the environment close to its pre-exploration state, making

RoboEXP more practical for real-world applications.

TABLE I: Quantitative Results on Different Tasks. We compare the performance of both the GPT-4V baseline and our system across
various tasks. We assess the outcomes using five distinct metrics to illustrate diverse facets of the interactive exploration process. Our system
consistently outperforms the baseline across all tasks and metrics.

Task (10 variance for each) Drawer-Only Door-Only Drawer-Door Recursive Occlusion

Metric GPT-4V Ours GPT-4V Ours GPT-4V Ours GPT-4V Ours GPT-4V Ours

Success % ↑ 20±13.3 90±10.0 30±15.2 90±10.0 10±10.0 70±15.3 0±0.0 70±15.3 0±0.0 50±16.7
Object Recovery % ↑ 83±11.0 97±3.3 50±16.7 100±0.0 62±10.7 91±4.7 20±13.3 80±11.7 17±11.4 67±14.9
State Recovery % ↑ 60±16.3 100±0.0 80±13.3 100±0.0 70±15.3 100±0.0 70±15.3 100±0.0 10±10.0 70±15.3
Unexplored Space % ↓ 15±7.6 0±0.0 40±14.5 0±0.0 25±6.5 0±0.0 63±15.3 15±8.9 85±7.6 30±15.3
Graph Edit Dist. ↓ 2.8±1.04 0.2±0.20 4.4±1.42 0.1±0.10 5.6±1.46 0.5±0.27 8.8±2.06 2.1±1.49 7.3±0.97 2.5±1.15

0.00%

25.00%

50.00%

75.00%

100.00%

GPT-4V RoboEXP

Perception
Error

Decision
Error

Action

Error

No Error
RoboEXP GPT-4V

Objects

Actions

12

7

0

GT Static

Objects

Actions

2

5

0

Done Fail

(a) Action-object Graph (b) Error Breakdown

Fig. 5: Visualization of Quantitative Results. (a) The action-object graph captures the change in the number of discovered objects relative to
the number of actions taken. Our RoboEXP efficiently discovers all objects. Sometimes, the object count doesn’t increase during actions due
to the absence of objects in storage after opening. Additionally, some actions are employed to restore the scene state (e.g., closing the door
after exploration). (b) The error breakdown of all our quantitative experiments includes 5 task settings with 10 variations each. We categorize
errors into perception, decision, action, and no-error cases. For the GPT-4V baseline, manual assistance in action execution eliminates failure
cases, serving as an upper bound for baseline performance. Even in this scenario, our RoboEXP largely outperforms the baseline.

V. EXPERIMENTS

In this section, we assess the performance of our system

across a variety of tabletop scenarios. Our primary objective

is to address two key questions through experiments: 1) How

does our proposed system handle diverse exploration scenarios

well and build the complete ACSG? 2) How useful is our

ACSG in the downstream object retrieval and manipulation

tasks?

A. Interactive Exploration and Scene Graph Building

Robot Setups. All our experiments are conducted in a

real-world setting. In the tabletop scenarios, we mount one

RealSense-D455 camera on the wrist of the robot arm to collect

RGBD observations, with the execution of actions performed

by the UFACTORY xArm 7. The end effector for our robot

arm is the soft gripper (see Fig. 3). In the mobile setting, we

choose the Hello Robot Stretch2 with the official upgraded

kits. Our experimental setup encompasses a diverse range of

objects, as illustrated in Fig. 4.

Experiment Settings. To assess our system’s efficacy, we

designed five types of experiments, each with 10 different

settings varying in object number, type, and layout. We validate

the performance of our system in constructing ACSG through

quantitative analysis and qualitative demonstrations.

We compare our system with a strong baseline by augment-

ing GPT-4V with ground truth actions. This baseline operates

in a closed-loop fashion, receiving RGB observations from

different viewpoints. At each turn, it generates the current

scene graph, encompassing hidden objects, and suggests the

next action to be taken (refer to the complete prompts in the

Appendix). To ensure the baseline is robust, we utilize manual

actions as ground truth references for the proposed actions.

In contrast, in the exploration experiments described below,

all actions from our system are automatically executed by our

action module on the physical robot. It is also crucial to note

that the output ACSG from our system faithfully aligns with the

task requirements. Conversely, for the baseline, we manually

construct ACSG based on its actions and the new observations

it uncovers. Due to the unstructured nature of the raw scene

graph from the baseline, we carefully refine it according to the

observable objects, providing an upper-bound performance for

comparison during evaluation.

We design five key metrics to measure the performance

of the interactive exploration task. 1) Success evaluates the

success percentage across 10 variants for each task. We define

success for each experiment as 1 when the final outputted

ACSG exactly matches the GT version, and 0 otherwise; 2)

Object Recovery quantifies the percentage of hidden objects

successfully identified; 3) State Recovery indicates whether

the final state resembles the original state before exploration;

4) Unexplored Space evaluates the percentage of successfully

explored need-to-explore space to reduce the robot’s uncertainty

Table

Doll Plate Condiment Hamburger

Condiment

Drawer
Handle

Open

Drawer
Handle

Open

Fork

Drawer
Handle

Open

Cabinet

Refrigerator

Open

Can

Door
Handle

on on on on on

on belong belong belong

Inside

Inside

Inside

Table Matryoshka
on

Pick
Under

Matryoshka Pick
Under

Matryoshka Pick

Under
MatryoshkaPickMatryoshka

Under
Pick

?

Table
on

Fabric

Pick
Under

Mouse

? ? ?

?

（
a
)

A
rt

ic
u
la

te
d
 O

b
je

c
ts

（
b
)

N
e
s
te

d
 O

b
je

c
ts

（
c
)

D
e
fo

rm
a
b
le

 O
b
je

c
ts

Fig. 6: Qualitative Results on Different Scenarios. We visualize the interactive exploration process and the corresponding constructed
ACSG. (a) This scenario involves a tabletop environment with two articulated objects, accompanied by additional items either on the table
or concealed in storage space. The constructed scene graph demonstrates the success of our system in identifying all objects within the
environment through a series of physical interactions. (b) This scenario includes nested objects, five Matryoshka dolls, with only the top
one being directly observable. Our system autonomously decides to explore the contents through a recursive reasoning process, showcasing
its ability to construct deep ACSG. (c) This scenario involves a fabric covering a mouse, showcasing exploration scenarios that involve a
deformable object. Our system interacts with the fabric and successfully uncovers what lies beneath it.

about the scene; 5) Graph Edit Distance (GED) measures

the disparity between the outputted graph and the GT graph.

Comparison. The quantitative findings presented in Tab. I

underscore the superior performance of our system compared

to the baseline method. Our approach showcases a notable

enhancement across all metrics, outperforming the baseline by a

considerable margin. The collective assessment of success rate,

object recovery, and unexplored space metrics unequivocally

validates the efficacy of our system in exploring unfamiliar

scenes through interactive processes. It is essential to highlight

that in the case of object recovery, the baseline method may

occasionally choose to randomly open certain drawers or doors

to unveil objects. This randomness contributes to a seemingly

higher object recovery rate for the baseline, which may not

necessarily correlate with its overall success. The unexplored

space metric shows that our system is much more stable in

exploring all need-to-explore spaces.

Moreover, both the success rate and graph edit distance

underscore the close alignment of our system with human

actions, highlighting the efficiency of our approach across

diverse scenarios. The state recovery metric assesses whether

the final state post-exploration resembles the initial state. Our

system consistently shows effective state recovery; however,

the baseline may trick this metric by opting not to take any

action, resulting in an artificially high score in this aspect.

Fig. 5a provides additional insights, illustrating that as

the number of actions increases, so does the number of

objects. Specifically, we present the ground truth object number

alongside the directly-observable object number that can be

represented by the traditional 3D scene graph. These results

（
a
)
In

D
ra
w
e
r?

Floor

Table Sofa

Drawer
Handle

Open

Apple

Drawer
Handle

Open

Cabinet

on on on

belong belong

Inside

PlantDoll

Coke Game
?

on on

on on

?

（
b
)
U
n
d
e
r
C
lo
th
?

Floor

Table Chair

Reader

Pick

Chair

on on on

Flower

on

Cloth

on

Under

Fig. 7: Experiments on Mobile Robot Scenarios. We visualize the interactive exploration process and the corresponding constructed ACSG
in the mobile robot settings. (a) This scenario includes a table, a cabinet, a sofa, multiple small items, and an apple hidden in the top drawer.
(b) This scenario involves two chairs, one table, and a reader hidden by the cloth above.

underscore our system’s ability to achieve robust and efficient

exploration throughout the exploration process. Our system

excels in efficiently discovering all concealed objects, whereas

the baseline fails either due to a lack of early-stage actions or

an inability to explore all need-to-explore spaces even upon

completion. The analysis of errors (Fig. 5b) in both our system

and the baseline reveals the specific failure cases encountered

by the baselines. In contrast, our system demonstrates enhanced

robustness in both perception and decision-making.

Fig. 6 further illustrates various exploration scenarios along

with their corresponding ACSG. These scenarios encompass

ACSG with varying width or depth, highlighting our system’s

adaptive capability across diverse objects such as rigid, ar-

ticulated objects, nested objects, and deformable objects. In

addition, the scenario in Fig. 2 shows that our system is able

to deal with the scenario with obstruction.

B. ACSG for Object Retrieval and Manipulation Tasks

The scenarios depicted in Fig. 1 exemplify the efficacy of

our generated output (ACSG) in manipulation tasks. Consider

the table-rearranging scenario: without our ACSG, the robot

struggles to swiftly prepare the table due to the lack of precise

prior knowledge about the location of objects (e.g., the fork

stored in the top-left drawer of the wooden cabinet). Beyond

comprehensive layout guidance, our ACSG also addresses a

crucial question regarding task feasibility for the robot. For

instance, if there is no spoon in the scene, the robot recognizes

its inability to perform the task and asks for human help.

In addition to enhancing downstream manipulation tasks,

our ACSG possesses the capability to autonomously adapt to

environmental changes. In the human intervention setting, our

system seamlessly explores newly added components, such as a

cabinet, ensuring continuous adaptability. Check our Appendix

and supplemental video for more details.

C. Extension to Mobile Robot

We also demonstrate the effectiveness of our pipeline using

a mobile robot in household scenarios. To adapt to Stretch2, we

merely modified our action module to follow the new kinematic

structure, while keeping other modules nearly the same. Fig. 7

shows two scenes with hidden objects in drawers and under

cloth. Our system is capable of exploring the scene, utilizing

manipulation and mobility, to construct the full ACSG and

recover the scene. By leveraging the constructed ACSG, we

can easily locate the hidden apple and e-reader.

D. Remaining Challenges

Although our system has proven effective, there is room for

improvement. The breakdown of the failure rate in Fig. 5.b

suggests that failures primarily arise from detection and

segmentation errors within the perception module. To address

this issue, we envision two future directions: 1) enhancing

the capabilities of visual foundation models for open-world

semantic understanding, and 2) utilizing temporal cues and

semantic fusion techniques to improve perception robustness

through continuous observations.

Furthermore, our system would benefit from enhanced LMM

capacities and the integration of sophisticated skill modules,

including learning-based or model-based path planning. Such

improvements would improve both the decision-making and

action modules, thereby further reducing failure cases.

VI. CONCLUSION

We introduced RoboEXP, a foundation-model-driven robotic

exploration framework capable of effectively identifying all

objects in a complex scene, both directly observable and

those revealed through interaction. Central to our system is

action-conditioned 3D scene graph, an advanced 3D scene

graph that goes beyond traditional models by explicitly mod-

eling interactive relations between objects. Experiments have

shown RoboEXP’s superior performance in interactive scene

exploration across various challenging scenarios, significantly

outperforming a strong GPT4V-based baseline. Notably, the

reconstructed action-conditioned 3D scene graph is crucial for

guiding complex downstream manipulation tasks, like setting

up the table in a mock environment with fridges, cabinets,

and drawer sets. Our system and its action-conditioned scene

graph lay the groundwork for practical robotic deployment in

complex settings, especially in environments like households

and offices, facilitating their integration into everyday human

activities.

REFERENCES

[1] R. Bajcsy. Active perception. Proceedings of the IEEE,

1988. 2, 3

[2] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen

Oleynikova, and Roland Siegwart. Receding horizon

"next-best-view" planner for 3d exploration. In ICRA,

2016. 3

[3] Ana Batinovic, Antun Ivanovic, Tamara Petrovic, and

Stjepan Bogdan. A shadowcasting-based next-best-view

planner for autonomous 3d exploration. RA-L, 2022.

[4] Menaka Naazare, Francisco Garcia Rosas, and Dirk

Schulz. Online next-best-view planner for 3d-exploration

and inspection with a mobile manipulator robot. RA-L,

2022. 3

[5] Benjamin Charrow, Gregory Kahn, Sachin Patil, Sikang

Liu, Ken Goldberg, Pieter Abbeel, Nathan Michael,

and Vijay Kumar. Information-theoretic planning with

trajectory optimization for dense 3d mapping. In RSS,

2015. 2

[6] Georgios Georgakis, Bernadette Bucher, Anton Arapin,

Karl Schmeckpeper, Nikolai Matni, and Kostas Daniilidis.

Uncertainty-driven planner for exploration and navigation.

In ICRA, 2022. 2

[7] Christos Papachristos, Shehryar Khattak, and Kostas

Alexis. Uncertainty-aware receding horizon exploration

and mapping using aerial robots. In ICRA, 2017. 2

[8] B. Yamauchi. A frontier-based approach for autonomous

exploration. In Proceedings 1997 IEEE International

Symposium on Computational Intelligence in Robotics

and Automation CIRA’97. ’Towards New Computational

Principles for Robotics and Automation’, 1997. 2

[9] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and

Goldie Nejat. Deep reinforcement learning robot for

search and rescue applications: Exploration in unknown

cluttered environments. RA-L, 2019. 2

[10] Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco,

Ludwig Schmidt, and Shuran Song. Cows on pasture:

Baselines and benchmarks for language-driven zero-shot

object navigation. In CVPR, 2023. 2

[11] Ram Ramrakhya, Eric Undersander, Dhruv Batra, and

Abhishek Das. Habitat-web: Learning embodied object-

search strategies from human demonstrations at scale. In

CVPR, 2022. 2

[12] Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind

Niklasson, Max Shatkhin, and Yoav Artzi. Mapping

instructions to actions in 3d environments with visual

goal prediction. arXiv preprint arXiv:1809.00786, 2018.

2

[13] Arsalan Mousavian, Alexander Toshev, Marek Fiser,

J. Kosecka, and James Davidson. Visual representations

for semantic target driven navigation. ICRA, 2018. 2

[14] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans.

Auxiliary tasks and exploration enable objectgoal naviga-

tion. In ICCV, 2021.

[15] Peihao Chen, Dongyu Ji, Kunyang Lin, Weiwen Hu,

Wenbing Huang, Thomas Li, Mingkui Tan, and Chuang

Gan. Learning active camera for multi-object navigation.

NeurIPS, 2022. 3

[16] Tushar Nagarajan and Kristen Grauman. Learning

affordance landscapes for interaction exploration in 3d

environments. In NeurIPS, 2020. 2, 3

[17] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg,

Micael Edmond Tchapmi, Alexander Toshev, Roberto

Martín-Martín, and Silvio Savarese. Interactive gibson

benchmark: A benchmark for interactive navigation in

cluttered environments. RA-L, 2020. 2

[18] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao

Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su,

Jun Zhu, et al. Grounding dino: Marrying dino with

grounded pre-training for open-set object detection. arXiv

preprint arXiv:2303.05499, 2023. 2, 5

[19] Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-

Wing Tai, Chi-Keung Tang, and Fisher Yu. Segment any-

thing in high quality. arXiv preprint arXiv: 2306.01567,

2023. 2, 5

[20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi

Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer

Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár,

and Ross Girshick. Segment anything. arXiv:2304.02643,

2023. 2, 5

[21] Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh,

Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda

Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,

and Ilya Sutskever. Learning transferable visual models

from natural language supervision. ICML, 2021. 2, 5

[22] OpenAI. Gpt-4v(ision) system card.

https://cdn.openai.com/papers/GPTV System Card.pdf,

2023. 2, 3, 6

[23] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang,

Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.

The dawn of lmms: Preliminary explorations with gpt-

4v(ision). arXiv preprint arXiv: 2309.17421, 2023. 2, 3,

6

[24] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu

Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable

3d value maps for robotic manipulation with language

models. arXiv preprint arXiv:2307.05973, 2023. 2, 3, 6,

14

[25] Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang

Gao. Look before you leap: Unveiling the power of gpt-

4v in robotic vision-language planning. arXiv preprint

arXiv: 2311.17842, 2023. 2, 3, 6, 17

[26] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia

Li, David Shamma, Michael Bernstein, and Li Fei-Fei.

Image retrieval using scene graphs. In CVPR, 2015. 2

[27] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-

Fei. Scene graph generation by iterative message passing.

In CVPR, 2017. 2

[28] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-

Fei. Visual relationship detection with language priors.

In ECCV, 2016. 2

[29] Ruihai Wu, Kehan Xu, Chenchen Liu, Nan Zhuang, and

Yadong Mu. Localize, assemble, and predicate: Contextual

object proposal embedding for visual relation detection.

In AAAI, 2020.

[30] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-

Seng Chua. Visual translation embedding network for

visual relation detection. In CVPR, 2017. 2

[31] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and

Devi Parikh. Graph r-cnn for scene graph generation. In

ECCV, 2018. 2

[32] Nathan Hughes, Yun Chang, Siyi Hu, Rajat Talak,

Rumaisa Abdulhai, Jared Strader, and Luca Carlone. Foun-

dations of spatial perception for robotics: Hierarchical

representations and real-time systems. arXiv preprint

arXiv: 2305.07154, 2023. 2

[33] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir,

Martin Fischer, Jitendra Malik, and Silvio Savarese. 3d

scene graph: A structure for unified semantics, 3d space,

and camera. In ICCV, 2019. 2

[34] Jared Strader, Nathan Hughes, William Chen, Alberto

Speranzon, and Luca Carlone. Indoor and outdoor

3d scene graph generation via language-enabled spatial

ontologies. arXiv preprint arXiv:2312.11713, 2023. 2

[35] William Chen, Siyi Hu, Rajat Talak, and Luca Carlone.

Leveraging large (visual) language models for robot 3d

scene understanding. arXiv preprint arXiv: 2209.05629,

2022. 2

[36] Jiayuan Mao, Tomás Lozano-Pérez, Joshua B Tenenbaum,

and Leslie Pack Kaelbling. Learning reusable manipula-

tion strategies. In CoRL, 2023. 2

[37] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun

Wu, Antonio Torralba, and Joshua B Tenenbaum. Clevrer:

Collision events for video representation and reasoning.

arXiv preprint arXiv:1910.01442, 2019. 2

[38] Renhao Wang, Jiayuan Mao, Joy Hsu, Hang Zhao,

Jiajun Wu, and Yang Gao. Programmatically grounded,

compositionally generalizable robotic manipulation. ICLR,

2023. 2

[39] Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu,

Joshua B. Tenenbaum, Tomás Lozano-Pérez, and

Leslie Pack Kaelbling. Compositional Diffusion-Based

Continuous Constraint Solvers. In CoRL, 2023. 2

[40] Weiyu Liu, Jiayuan Mao, Joy Hsu, Tucker Hermans,

Animesh Garg, and Jiajun Wu. Composable part-based

manipulation. In CoRL, 2023.

[41] Zhenfang Chen, Kexin Yi, Yunzhu Li, Mingyu Ding,

Antonio Torralba, Joshua B Tenenbaum, and Chuang Gan.

Comphy: Compositional physical reasoning of objects and

events from videos. In ICLR, 2022.

[42] Jiayuan Mao, Tomas Lozano-Perez, Joshua B. Tenenbaum,

and Leslie Pack Kaelbing. PDSketch: Integrated Domain

Programming, Learning, and Planning. In NeurIPS, 2022.

[43] Aaron Ray, Christopher Bradley, Luca Carlone, and

Nicholas Roy. Task and motion planning in hierarchical

3d scene graphs. arXiv preprint arXiv: 2403.08094, 2024.

[44] Weiwei Gu, Anant Sah, and N. Gopalan. Interactive visual

task learning for robots. AAAI Conference on Artificial

Intelligence, 2023. doi: 10.48550/arXiv.2312.13219. 2

[45] Farzad Niroui, Ben Sprenger, and Goldie Nejat. Robot

exploration in unknown cluttered environments when

dealing with uncertainty. In IRIS, 2017. 2

[46] Stefan Oßwald, Maren Bennewitz, Wolfram Burgard,

and Cyrill Stachniss. Speeding-up robot exploration by

exploiting background information. RA-L, 2016.

[47] Matej Petrlik, Pavel Petracek, Vit Kratky, Tomas Musil,

Yurii Stasinchuk, Matous Vrba, Tomas Baca, Daniel Hert,

Martin Pecka, Tomas Svoboda, et al. Uavs beneath the

surface: Cooperative autonomy for subterranean search

and rescue in darpa subt. arXiv preprint arXiv:2206.08185,

2022.

[48] Marco Tranzatto, Takahiro Miki, Mihir Dharmadhikari,

Lukas Bernreiter, Mihir Kulkarni, Frank Mascarich, Olov

Andersson, Shehryar Khattak, Marco Hutter, Roland

Siegwart, et al. Cerberus in the darpa subterranean

challenge. Science Robotics, 2022.

[49] KAI-QING Zhou, Kai Zheng, Connor Pryor, Yilin Shen,

Hongxia Jin, L. Getoor, and X. Wang. Esc: Exploration

with soft commonsense constraints for zero-shot object

navigation. ICML, 2023. 2

[50] Albert J Zhai and Shenlong Wang. Peanut: predicting

and navigating to unseen targets. In ICCV, 2023. 2

[51] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang

Wang, and Bernadette Bucher. Vlfm: Vision-language

frontier maps for zero-shot semantic navigation. arXiv

preprint arXiv:2312.03275, 2023. 2

[52] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan

Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,

and Dieter Fox. Alfred: A benchmark for interpreting

grounded instructions for everyday tasks. In CVPR, 2020.

2

[53] Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and

Roozbeh Mottaghi. Visual room rearrangement. In CVPR,

2021.

[54] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J

Davison, Jia Deng, Vladlen Koltun, Sergey Levine,

Jitendra Malik, Igor Mordatch, Roozbeh Mottaghi, et al.

Rearrangement: A challenge for embodied ai. arXiv

preprint arXiv:2011.01975, 2020.

[55] Fei Xia, Chengshu Li, Roberto Martín-Martín, Or Litany,

Alexander Toshev, and Silvio Savarese. Relmogen: Lever-

aging motion generation in reinforcement learning for

mobile manipulation. arXiv preprint arXiv:2008.07792,

2020.

[56] Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli Van-

derBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi,

and Roozbeh Mottaghi. Manipulathor: A framework for

visual object manipulation. In CVPR, 2021. 2

[57] Philip Arm, Gabriel Waibel, Jan Preisig, Turcan Tuna,

Ruyi Zhou, Valentin Bickel, Gabriela Ligeza, Takahiro

Miki, Florian Kehl, Hendrik Kolvenbach, et al. Scientific

exploration of challenging planetary analog environments

with a team of legged robots. Science robotics, 2023. 2

[58] Martin J Schuster, Marcus G Müller, Sebastian G Brunner,

Hannah Lehner, Peter Lehner, Ryo Sakagami, Andreas

Dömel, Lukas Meyer, Bernhard Vodermayer, Riccardo

Giubilato, et al. The arches space-analogue demonstration

mission: Towards heterogeneous teams of autonomous

robots for collaborative scientific sampling in planetary

exploration. RA-L, 2020.

[59] Takahiro Sasaki, Kyohei Otsu, Rohan Thakker, Sofie

Haesaert, and Ali-akbar Agha-mohammadi. Where

to map? iterative rover-copter path planning for mars

exploration. RA-L, 2020. 2

[60] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Bur-

gard. Information gain-based exploration using rao-

blackwellized particle filters. In RSS, 2005. 2

[61] Fanfei Chen, John D Martin, Yewei Huang, Jinkun Wang,

and Brendan Englot. Autonomous exploration under

uncertainty via deep reinforcement learning on graphs.

In IROS, 2020. 2

[62] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey,

Trevor Darrell, and Alexei A. Efros. Large-scale study

of curiosity-driven learning. In ICLR, 2019. 2

[63] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and

Trevor Darrell. Curiosity-driven exploration by self-

supervised prediction. In ICML, 2017.

[64] Simone Parisi, Victoria Dean, Deepak Pathak, and Ab-

hinav Gupta. Interesting object, curious agent: Learning

task-agnostic exploration. In NeurIPS, 2021. 2

[65] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra

Malik, and Sergey Levine. Learning to poke by poking:

Experiential learning of intuitive physics. NeurIPS, 2016.

2

[66] Lerrel Pinto and Abhinav Gupta. Learning to push by

grasping: Using multiple tasks for effective learning. In

ICRA, 2017.

[67] Tim Schneider, Boris Belousov, Georgia Chalvatzaki,

Diego Romeres, Devesh K Jha, and Jan Peters. Active

exploration for robotic manipulation. In IROS, 2022.

[68] Neil Nie, Samir Yitzhak Gadre, Kiana Ehsani, and Shuran

Song. Structure from action: Learning interactions for

articulated object 3d structure discovery. arXiv preprint

arXiv:2207.08997, 2022. 3

[69] Cheng-Chun Hsu, Zhenyu Jiang, and Yuke Zhu. Ditto

in the house: Building articulation models of indoor

scenes through interactive perception. arXiv preprint

arXiv:2302.01295, 2023.

[70] Linghao Chen, Yunzhou Song, Hujun Bao, and Xiaowei

Zhou. Perceiving unseen 3d objects by poking the objects.

In ICRA, 2023.

[71] Jun Lv, Yunhai Feng, Cheng Zhang, Shuang Zhao, Lin

Shao, and Cewu Lu. Sam-rl: Sensing-aware model-based

reinforcement learning via differentiable physics-based

simulation and rendering. RSS, 2023.

[72] Youssef Zaky, Gaurav Paruthi, Bryan Tripp, and James

Bergstra. Active perception and representation for robotic

manipulation. arXiv preprint arXiv:2003.06734, 2020. 2

[73] Active perception vs. passive perception. In Proc. of

IEEE Workshop on Computer Vision, 1985. 3

[74] Qihang Fang, Yingda Yin, Qingnan Fan, Fei Xia, Siyan

Dong, Sheng Wang, Jue Wang, Leonidas Guibas, and Bao-

quan Chen. Towards accurate active camera localization.

In ECCV, 2022. 3

[75] Shengyong Chen, Youfu F Li, Wanliang Wang, and

Jianwei Zhang. Active sensor planning for multiview

vision tasks. 2008. 3

[76] Mahsa Ghasemi, Erdem Bulgur, and Ufuk Topcu. Task-

oriented active perception and planning in environments

with partially known semantics. In ICML, 2020. 3

[77] Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qingnan

Fan, Leonidas Guibas, and Hao Dong. AdaAfford: Learn-

ing to adapt manipulation affordance for 3d articulated

objects via few-shot interactions. In ECCV, 2022. 3

[78] Roberto Martín-Martín and Oliver Brock. Building

kinematic and dynamic models of articulated objects with

multi-modal interactive perception. In 2017 AAAI Spring

Symposium Series, 2017. 3

[79] Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:

Building digital twins of articulated objects from interac-

tion. In CVPR, 2022. 3

[80] Quoc V Le, Ashutosh Saxena, and Andrew Y Ng. Active

perception: Interactive manipulation for improving object

detection. Standford University Journal, 2008. 3

[81] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan

Lee, Devi Parikh, and Dhruv Batra. Embodied question

answering. In CVPR, 2018. 3

[82] Snehal Jauhri, Sophie Lueth, and Georgia Chalvatzaki.

Active-perceptive motion generation for mobile manipu-

lation. arXiv preprint arXiv:2310.00433, 2023. 3

[83] Steven D Whitehead and Dana H Ballard. Active

perception and reinforcement learning. In Machine

Learning Proceedings 1990. 1990. 3

[84] John Schulman, Barret Zoph, Christina Kim, Jacob Hilton,

Jacob Menick, Jiayi Weng, Juan Felipe Ceron Uribe,

Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt:

Optimizing language models for dialogue. OpenAI blog,

2022. 3

[85] R OpenAI. Gpt-4 technical report. arXiv preprint

arXiv:2303.08774, 2023.

[86] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey

Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan

Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,

Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,

Daniel Duckworth, Sergey Levine, Vincent Vanhoucke,

Karol Hausman, Marc Toussaint, Klaus Greff, Andy

Zeng, Igor Mordatch, and Pete Florence. Palm-e: An

embodied multimodal language model. In arXiv preprint

arXiv:2303.03378, 2023. 3

[87] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,

Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman,

et al. Do as i can, not as i say: Grounding language in

robotic affordances. arXiv preprint arXiv:2204.01691,

2022. 3, 14

[88] Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and

Subbarao Kambhampati. Leveraging pre-trained large

language models to construct and utilize world models

for model-based task planning. In Advances in Neural

Information Processing Systems, 2023.

[89] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan,

Kaya Stechly, Mudit Verma, Siddhant Bhambri, Lucas

Saldyt, and Anil Murthy. Llms can’t plan, but can help

planning in llm-modulo frameworks. arXiv preprint arXiv:

2402.01817, 2024. 3

[90] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky

Liang, Pete Florence, Andy Zeng, Jonathan Tompson,

Igor Mordatch, Yevgen Chebotar, et al. Inner monologue:

Embodied reasoning through planning with language

models. arXiv preprint arXiv:2207.05608, 2022. 3

[91] Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil

Madaan, Madhavan Iyengar, David F Fouhey, and Joyce

Chai. Llm-grounder: Open-vocabulary 3d visual ground-

ing with large language model as an agent. arXiv preprint

arXiv:2309.12311, 2023. 3

[92] Yinpei Dai, Run Peng, Sikai Li, and Joyce Chai. Think,

act, and ask: Open-world interactive personalized robot

navigation. arXiv preprint arXiv:2310.07968, 2023. 3

[93] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol

Hausman, Brian Ichter, Pete Florence, and Andy Zeng.

Code as policies: Language model programs for embodied

control. In ICRA, 2023. 3, 14

[94] William Shen, Ge Yang, Alan Yu, Jansen Wong,

Leslie Pack Kaelbling, and Phillip Isola. Distilled feature

fields enable few-shot language-guided manipulation. In

CoRL, 2023. 3

[95] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala,

Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh

Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari,

et al. Conceptfusion: Open-set multimodal 3d mapping.

arXiv preprint arXiv:2302.07241, 2023. 5

[96] Shiyang Lu, Haonan Chang, Eric Pu Jing, Abdeslam

Boularias, and Kostas Bekris. Ovir-3d: Open-vocabulary

3d instance retrieval without training on 3d data. In CoRL,

2023. 5

[97] Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Krishna

Murthy Jatavallabhula, Bipasha Sen, Aditya Agarwal,

Corban Rivera, William Paul, Kirsty Ellis, Rama Chel-

lappa, Chuang Gan, Celso Miguel de Melo, Joshua

B. Tenenbaum, Antonio Torralba, Florian Shkurti, and

Liam Paull. Conceptgraphs: Open-vocabulary 3d scene

graphs for perception and planning. arXiv preprint arXiv:

2309.16650, 2023. 14

APPENDIX

A. Interactive Exploration

Due to space constraints, we did not include a comprehensive

explanation of the algorithm proposed in the problem statement,

but include more details here for clarity. We formulate the

interactive scene exploration task into an active perception and

exploration problem to construct the action-conditioned 3D

scene graph (ACSG).

The algorithm shown in the main paper simply mentions

“add spatial relations” and “add action preconditions” as part

of the function of the memory module, but without detailed

explanation. In the algorithm, we have demonstrated how to

construct the edges from objects to actions eo→a and from

actions to objects eo→a; however, there is a lack of description

for the other two types of edges.

Add Spatial Relations. The logic involves analyzing the

spatial relationships among objects using spatial heuristics

and incorporating the resulting spatial relation edges between

objects eo→o (see Algorithm 2).

Algorithm 2 Add Spatial Relations

1: input: Gt−1 = (Vt−1,Et−1)
2: Et = Et−1

3: for o ∈ Vt−1 do % check relations

4: if relation from o to oi then % memory

5: Et = Et ∪ {eo→oi
} % add edge

6: end if

7: if relation from oi to o then

8: Et = Et ∪ {eoi→o} % add edge

9: end if

10: end for

11: output: Gt % new scene graph

Add Action Preconditions. The approach is to assess the

feasibility of implementing the actions. We utilize the decision-

making module to verify whether there are any prerequisite

actions that need to be completed beforehand, and then adjust

the plan accordingly (see Algorithm 3).

Algorithm 3 Add Action Preconditions

1: input: Gt−1 = (Vt−1,Et−1),Ut−1

2: if object o obstruct then % decision-making

3: choose action a

4: Vt = Vt−1 ∪ {a}, Ut−1 ∪ {a} % add node

5: Et = Et−1 ∪ {eo→a} % add edge

6: Et = Et−1 ∪ {ea→ak
} % add edge

7: end if

8: output: Gt,Ut % new scene graph & plan

B. Usage of ACSG

The ACSG constructed during the exploration stage shows

beneficial for scenarios that require a comprehensive under-

standing of scene content and structure, such as household

environments like kitchens and living rooms, office environ-

ments, etc. We list several examples illustrating the potential

usage of the scene graph in various tasks.

Judging Object Existence. A direct application of our

ACSG is to determine the presence or absence of specific

objects in the current environment. For instance, during the

exploitation stage of the scenario to set the dining table, if the

spoon is missing, the robot can further seek human assistance.

Object Retrieval. One notable advantage of our ACSG is its

ability to capture all actions and their preconditions. Utilizing

this information, retrieving any object becomes straightforward

by following the graph structure and executing actions in

topological order along the paths from the root to the target

object node. For example, in the obstruction scenario, the

ACSG can provide the sequence of actions required to fetch

the tape: 1) removing the condiment blocking the cabinet door,

2) opening the cabinet via the door handle, and 3) retrieving

the tape. Such insights are crucial for tasks like cooking.

Advanced Usage. The high-level representation of the

environment provided by our ACSG serves as a simplified yet

effective model. Similar to the approach proposed by Gu et al.

[97], integrating the scene graph with Large Language Models

(LLM) or Large Multi-modal Models (LMM) offers enhanced

capabilities, including natural language interaction. This enables

the robot to respond to human preferences expressed in natural

language (e.g., fetching a coke when the person is thirsty) or

through visual cues (e.g., fetching a mug when the table is

dirty).

C. Decision-Making Module

As illustrated in the main paper, the decision-making module

fulfills two crucial functions within our system. The first

function serves as an action proposer (Fig. 8a), proposing the

appropriate skill for the query object node. The subsequent role

functions as the action verifier (Fig. 8b), tasked with confirming

the feasibility of implementing the action and determining the

action preconditions. The complete prompts for both roles are

detailed in Fig. 8.

We adhere to the standard practice for designing prompts,

as other papers do using LLM/LMM [87, 93, 24]. In order

not to compromise the generalization ability of our system,

we consistently use the same prompts across all scenarios and

experiments. Our fundamental rule for prompt design is to

minimize ambiguity and ensure alignment with our task. In

our experiments, the average response time from GPT-4V is

about 8 seconds for each question, which is acceptable as

GPT-4V is only used in high-level task planning. For low-level

motion planning, the use of action primitives allows us to meet

the high-frequency requirement without having to constantly

querying GPT-4V.

Our ACSG utilizes GPT-4V on every object node to

progressively expand the graph. Hence, regardless of how

complicated the scene is, each query posed to GPT-4V resides

on a local node within our ACSG, essentially addressing

the question, “Should I proceed with exploring this object,

and if so, how?” As shown in our Matryoshka scenario,

System: You are an assistant tasked with aiding in the construction of a complete scene graph for a tabletop environment. The objective is to identify all objects
hidden from the current observation in the tabletop setting. Your role involves selecting appropriate actions or opting not to take any action based on commonsense

knowledge in response to queries with current observations. Your responses will guide a robot in efficiently exploring the environment. Approach each step

thoughtfully, and analyze the fundamental problem deeply, considering the potential vagueness or inaccuracy in the queries. Adhere to the provided formats in your

instructions.

User: Analyze and provide your final answer for each new query object/part category, considering the given surrounding objects and observations in the tabletop
scene from different viewpoints. The query object/part will be enclosed in a green bounding box, though it may not always be fully accurate. Format your responses

as follows: "[Analysis]: <your reasoning process>; \n\n [Final Answer]: <skill>". Be comprehensive and avoid repeating my question. Choose from three skills: 1. Open
the doors or drawers. 2. Pick up / Open the top object. 3. No action. The primary goal is to select an action that has the potential to reveal hidden objects. The

secondary goal is to act efficiently, performing only necessary actions to uncover hidden objects. For example, if an object contains doors or drawers and can

potentially store something inside, opt for the first skill "Open the doors or drawers". If an object has no bottom side and can potentially cover something beneath it,
choose the second skill " Pick up / Open the top object"; otherwise, select the third skill "No action" to ensure efficiency.

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the skill but not others and follow the output format.

User: [Query Object] + [Query Images]

Assistant: [Reply from GPT-4V]

System: You are an assistant tasked with evaluating the feasibility of actions within a tabletop environment. Your role is to select suitable objects that could obstruct
open actions based on queries and current observations. Provide guidance for a robot's planning process. Approach each step thoughtfully, analyzing the underlying

problem thoroughly while considering potential vagueness or inaccuracy in the queries. Follow the provided formats in your instructions.

User: Provide an analysis and your final answer each time I present a new query object/part category, the list of surrounding objects you need to consider and
observations of the corresponding in the tabletop scene from different viewpoints. The query object/part is enclosed in a green bounding box, which may not always

be fully accurate. Present your reasoning process and final answer in the format "[Analysis]: <your reasoning process>; \n\n [Final Answer]: <list of objects>". Be
comprehensive and avoid repeating my question. Use the given list of surrounding objects, maintaining the provided names. Only consider the surrounding objects in

the given list. The objective is to identify all objects that could potentially block open actions. If an object obstructs the door or drawer from opening, include it in the

final list of objects. Analyze the action movement and identify the blocking objects.

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the object but not others and follow the output format.

(a
)

P
ro

m
p
ts

 o
f

P
ro

p
o
s
e
r

(b
)

P
ro

m
p
ts

 o
f
V

e
ri
fi
e
r

User: [Query Object] + [Query Images]

Assistant: [Reply from GPT-4V]

Fig. 8: Prompts of the Decision-Making module. We present the full prompts for the two pivotal roles of our decision-making module,
proposer in (a), verifier in (b). The prompts are used for all our experiments without modification and extra examples.

System: You are an assistant tasked with aiding in the construction of a complete scene graph for a tabletop environment. The objective is to identify all objects
hidden from the current observation in the tabletop setting. Your role involves selecting appropriate actions or opting not to take any action based on commonsense

knowledge in response to queries with current observations. Your responses will guide a robot in efficiently exploring the environment. Approach each step thoughtfully,
and analyze the fundamental problem deeply, considering the potential vagueness or inaccuracy in the queries. Adhere to the provided formats in your instructions.

User: Analyze and provide the current scene graph and your final answer for the next action given the latest observations in the tabletop scene from different

viewpoints. Each time you need to pick an action to do or choose "Done" to terminate. The action you can choose should be composed of (<object/part>, <skill>). Be

specific on which object or part you refer to. The skills you can choose: [1. Open the door. 2. Close the door. 3. Open the drawer. 4. Close the drawer. 5. Pick up the

object to idle space. 6. Pick back the object from the idle space]. Each time after you choose an action, you will receive the new observations after the action. Format

your responses as follows: "[Analysis]: <your reasoning process>; \n\n [Scene Graph]: <current scene graph> \n\n [Final Answer]: <skill>". Be comprehensive and
avoid repeating my question. The primary goal is to select an action that has the potential to reveal hidden objects. The secondary goal is to act efficiently, performing

only necessary actions to uncover hidden objects. The third goal is to make the object go back to the initial state after exploration. For the output scene graph, you

need to output all the objects in the scene, including those found during the exploration process.

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the skill but not others and follow the output format.

User: [Query Images]

Assistant: [Reply from GPT-4V]

User: [Query Images]

Assistant: [Reply from GPT-4V]

...

Fig. 9: Prompts of the GPT-4V baseline. To ensure fairness in comparison to this baseline, we choose to use similar prompts, employing
the chain-of-thoughts technique to enhance its performance.

RoboEXP performs well in complex scenarios featuring five

levels of hierarchical scene graphs and complicated exploration

procedures. The commonsense knowledge learned by GPT-

4V enables our system to efficiently explore the environment

without having to manually design the exploration rules for

diverse objects.

D. Action Module

The action module focuses on providing useful action primi-

tives to aid in constructing our ACSG. We have designed seven

action primitives: “open the [door]”, “open the [drawer]”,

“close the [door]”, “close the [drawer]”, “pick [object] to

idle space”, “pick back [object]”, “move wrist camera to

[position]”. To fully support autonomous actions, we employ

a heuristic-based algorithm leveraging geometric cues. The

input to each action primitive is an object node of our ACSG,

from which we can extract all necessary semantic, state, and

low-level geometry information of the object. The integrated

information can help us determine the specific grasping pose

and path planning for opening and picking actions, which

Table

Cabinet Cabinet

on on

Drawer

Handle

Drawer

Handle

belong belong

Drawer

Handle

Drawer

Handle

belong belong

Drawer

Handle

belong

Open

Banana

inside

Open

Apple

inside

Open

Open

Open

Apple

inside

Plate

on

Add Cabinet

Table

Cabinet

Door

Handle

Door

Handle

Coke

Open Open

on

belong belong

inside

Orange

Remove Orange

Add Coke

(a
)
A
d
d
C
a
b
in
e
t

(b
)
A
d
d
/R
e
m
o
ve

O
b
je
ct

Fig. 10: Qualitative Results on Different Intervention Scenarios. (a) This scenario involves adding a cabinet to the tabletop setting, and
our system can auto-detect the new cabinet and explore the objects inside. (b) This scenario includes removing and adding objects from and
into the cabinet. Our system can monitor hand interactions and re-explore the corresponding doors.

generalize to different instances in various positions and poses.

For opening action primitives related to doors or drawers,

engagement with handles is required. In our implementation,

we exploit the handle’s position and geometry to discern its

motion type (prismatic or revolute) and motion parameters

(motion axis and motion origin). Executing this action involves

utilizing the detected handle and its geometry to adeptly open

doors or drawers. Upon identifying the specific handle to

be operated, our system retrieves the point cloud converted

from our voxel-based representation corresponding to that

handle from our memory module. Subsequently, we employ

Principal Component Analysis (PCA) to determine the principal

direction of the handle, aiding in aligning the gripper for

optimal engagement. Additionally, understanding the opening

direction is pivotal for effectively handling doors or drawers.

To ascertain this, we analyze neighboring points and deduce the

most common normal as the opening direction. The combined

information of the handle direction and the opening direction

provides sufficient guidance for our robot arm to grasp the

handle and open the prismatic part. However, in the case of a

revolute joint, the motion becomes more intricate. Therefore,

we further utilize the motion parameters inferred from the

geometry to simulate the evolving opening direction based

on the revolute joint’s opening process. This well-designed

heuristic empowers our system to reliably open drawers or

doors in our tabletop setting.

For the pickup-related primitives, we simplify the pickup

logic to exclusively consider a top-down direction. Con-

sequently, our focus narrows down to acquiring essential

information such as the object’s height and xy location. We

achieve this by extracting the object’s point cloud from

its associated voxel-based representation. Subsequently, we

pinpoint the highest points within the cloud, calculating their

mean to determine the optimal pickup point. This calculated

point serves as a precise reference for our gripping mechanism,

facilitating the successful grasping of objects in the specified

direction.

Regarding viewpoint change, the primitive is parameterized

with the expected pose. For example, after opening the

door/drawer, to see inside, we develop the heuristic to choose

the proper viewpoint from the open direction as the parameter

for the primitive, allowing for the implementation of the action

primitive.

We conduct experiments in different settings to validate the

effectiveness of the model. We provide additional experiments

and results, including those with different lighting conditions

and backgrounds, using different LMMs, intervention experi-

ments, and several more room-level scenarios.

E. Experiment Settings

Our experimental setup encompasses a diverse range of

objects. To assess the effectiveness of our system, we devised

five types of experiments for the main quantitative results, each

encompassing 10 distinct settings. These settings vary in terms

of object number, type, and layout, as illustrated in Fig. 14.

F. GPT-4V Baseline

We employ the pure GPT-4V as our baseline model along

with the chain-of-thoughts (CoT) to enhance its capabilities,

as outlined in a method similar to that proposed by Hu et al.

N
o

rm
a
l

E
x
tr

e
m

e
 L

ig
h

t
R

a
n

d
o

m
 B

a
c
k
g

ro
u

n
d

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4 Success % ↑ OR % ↑

100 ± 0.0

100 ± 0.0

100 ± 0.0

100 ± 0.0

75 ± 28.9

100 ± 0.0

100 ± 0.0

100 ± 0.0

100 ± 0.0

92 ± 9.6

Fig. 11: Experiments on Extreme Illumination and Random Background. We conduct experiments in four scenarios with varying
lighting conditions and random backgrounds. The reported numbers are averages over four scenarios for each condition. Our system performs
well across all conditions. (OR refers to our Object Recovery metric).

TABLE II: Quantitative Results on Different LMMs. We conduct experiments with GPT-4V and LLaVA acting as the core of the RoboEXP
decision module, under the same fifteen settings as in Fig. 11.

Metric Success % ↑ Object Recovery % ↑ State Recovery % ↑ Unexplored Space % ↓ Graph Edit Dist. ↓

Ours (LLaVA) 25±25.6 50±29.6 100±0.0 23±21.9 2.5±0.98
Ours (GPT-4V) 95±12.9 98±4.3 100±0.0 0±0.0 0.1±0.26

[25]. The full prompt of the GPT-4V baseline is illustrated in

Fig. 9.

G. Extreme Illumination and Random Background

RoboEXP is robust to extreme lighting conditions and

complex backgrounds. To demonstrate this, we tested under four

different scenarios, each with varying lighting conditions and

random backgrounds. Fig. 11 shows twenty different settings

and their corresponding results. In various conditions and

scenarios, our system is able to successfully conduct interactive

exploration and construct the ACSG, indicating the robustness

of RoboEXP to these factors.

H. Performance on Different LMMs

RoboEXP is compatible with different multimodal foun-

dation models beyond GPT-4V. We conducted additional

experiments using the latest LLaVA-v1.6-34b as the core of our

decision module and compared it against GPT-4V under the

same settings. Tab. II shows that both models can work with

our RoboEXP system, yet the capacity of LMMs does influence

the overall performance. In general, GPT-4V achieves a higher

success rate and more consistent behaviors across different

scenarios.

I. Human Intervention

Our RoboEXP system possesses the capability to au-

tonomously adapt to changes in the environment. We employ

two types of human interventions to demonstrate these points.

The first type of intervention (Fig. 12a) involves adding new

cabinets to the scene. In this scenario, we add a cabinet to the

explored area, allowing our system to automatically explore

the newly added cabinets and update the ACSG.

The second type of intervention (Fig. 12b) involves adding

new objects to or removing existing ones from the cabinets in

the current scene. Our system can monitor human interactions

and discern which objects require re-exploration. Subsequently,

it autonomously updates the ACSG based on re-exploration.

J. Room-Level Household Scenarios

RoboEXP can work well in room-level household environ-

ments. To demonstrate this, we conducted two experiments

within an apartment (see Fig. 13), specifically in the dining area

and bedroom. We integrated four RGB-D observations captured

by a handheld RealSense D455 with ICP-based multi-way

alignment. Our system successfully constructs corresponding

scene graphs within the room-level household environments.

Once the static scene graph is constructed, our decision

module effectively identifies the correct objects for exploration.

Specifically, it accurately identifies the fridge in Fig. 13 (a)

and the cabinet in Fig. 13 (b) for further exploration. Tab. III

shows the complete responses from GPT-4V in our decision

module on determining the actions to take in our two household

scenarios.

Table

Cabinet Cabinet

on on

Drawer

Handle

Drawer

Handle

belong belong

Drawer

Handle

Drawer

Handle

belong belong

Drawer

Handle

belong

Open

Banana

inside

Open

Apple

inside

Open

Open

Open

Apple

inside

Plate

on

Add Cabinet

Table

Cabinet

Door

Handle

Door

Handle

Coke

Open Open

on

belong belong

inside

Orange

Remove Orange

Add Coke

(a
)
A
d
d
C
a
b
in
e
t

(b
)
A
d
d
/R
e
m
o
ve

O
b
je
ct

Fig. 12: Qualitative Results on Different Intervention Scenarios. (a) This scenario involves adding a cabinet to the tabletop setting, and
our system can auto-detect the new cabinet and explore the objects inside. (b) This scenario includes removing and adding objects from and
into the cabinet. Our system can monitor hand interactions and re-explore the corresponding doors.

Fig. 13: Experiments on Room-Level Household Scenarios. We conduct experiments in two room-level household environments. The
dining area includes a table, fridge, and items on the table, whereas the bedroom includes a bed, cabinet, and a TV. The figure presents (a)
the observations with segmentation masks; (b) the low-level reconstructed geometry; (c) the built high-level scene graph.

(a
)

D
ra

w
e
r-

O
n
ly

(b
)

D
o
o
r-

O
n
ly

(c
)

D
ra

w
e
r-

D
o
o
r

(d
)

R
e
c
u
rs

iv
e

(e
)

O
c
c
lu

s
io

n

Fig. 14: Experiment Settings. Varied object numbers, types, and layouts in our experimental settings of the quantitative results.

TABLE III: Decision Module Logs for Household Scenarios. We present all responses from GPT-4V for our two household scenarios: the
dining space case and the bedroom case. The inputs to our decision module are images from various viewpoints of the query object in a
green bounding box.

Query Object LMM Response

Dining Space

Fridge [Analysis]: The object in question is a fridge, which is typically used to store food and drinks. The green bounding box
in the images highlights the fridge, which has doors that can be opened. Since the goal is to identify all objects hidden
from the current observation in the tabletop setting, and a fridge is an appliance that commonly contains items inside, it is
reasonable to assume that opening the fridge could reveal hidden objects.
[Final Answer]: Open the doors or drawers.

Chair [Analysis]: The object in question is a chair, which is typically not used to store objects in a way that would require
opening or removing parts to reveal them. Chairs are designed for sitting, and while it is possible for items to be placed on
or under them, the chair itself does not have compartments that would be opened or closed. The images show the chair
from different angles, and there is no indication that there are hidden compartments or objects on the chair that would
necessitate an action to uncover them. The chair does not have a top object that would be opened or picked up, and it does
not have doors or drawers.
[Final Answer]: No action.

Table [Analysis]: The object in question is a table, which is highlighted with a green bounding box in the images provided.
From the different viewpoints, it is clear that the table has a flat top surface with no visible drawers or doors that could be
opened to reveal hidden objects. The table does not appear to have a covering that could hide something underneath it.
The table’s design is simple, with a single central support and no storage compartments. Therefore, there is no action
required that would potentially reveal hidden objects in this case.
[Final Answer]: No action.

Laptop [Analysis]: The object in question is a laptop, which is placed on a table. Laptops do not have a hidden compartment that
would typically contain other objects, nor do they obstruct the view of objects underneath them when they are in an open
position, as seen in the images. The laptop is already open, and there is no indication that there is anything on top of it or
that it is covering anything beneath it. Therefore, there is no action required that would reveal any hidden objects in this
case.
[Final Answer]: No action.

Mug [Analysis]: The mug in the green bounding box is sitting on a tabletop and does not appear to be covering anything, nor
does it have a lid that could be hiding something inside. Mugs are typically open containers and do not have compartments
that would conceal objects. Therefore, there is no need to pick it up to look underneath.
[Final Answer]: No action.

Kettle [Analysis]: The object in question is a kettle, which is sitting on top of a table. Kettles are typically not used to store other
items, especially when they are placed in a setting like a tabletop where they are likely used for their intended purpose of
boiling water. The kettle does not have drawers or doors, and it is unlikely that it is obscuring any items on the table
due to its shape and size. Therefore, there is no need to open any part of the kettle, and it is not obstructing any items
underneath it.
[Final Answer]: No action.

Bedroom

Cabinet [Analysis]: The object in question is a cabinet, as indicated by the green bounding box in the provided images. Cabinets
typically have doors or drawers that can be opened to reveal contents stored inside. In the images, the cabinet appears to
have several drawers. Since the primary goal is to select an action that has the potential to reveal hidden objects, and the
cabinet has drawers that could contain items, the appropriate action would be to open these drawers.
[Final Answer]: Open the doors or drawers.

Bed [Analysis]: The object in question is a bed, which is typically not a storage furniture piece with doors or drawers. However,
some beds do come with storage options underneath, such as drawers or a lifting mechanism for accessing a storage space.
In the provided image, the bed appears to have a solid base without visible drawers or doors. There is no indication that
the bed has a mechanism to lift the mattress to reveal storage underneath. Therefore, it is unlikely that there are hidden
objects within the bed that can be accessed by opening doors or drawers.
[Final Answer]: No action.

Television [Analysis]: The object in question is a television, which is placed on top of a surface, likely a media console or a dresser
with drawers. Televisions are not typically used to store objects behind or within them, as they are electronic devices
designed for display purposes. The images show the television from two different angles, and there is no indication
that there are any hidden compartments or objects behind the screen that would be revealed by moving it. Additionally,
televisions are generally not designed to have openable parts that would conceal objects. The media console or dresser
beneath the television does have drawers, but since the query is specifically about the television, these are not the focus for
the action to be taken.
[Final Answer]: No action.

	Introduction
	Related Works
	Problem Statement
	Action-Conditioned 3D Scene Graph
	Interactive Exploration

	Method
	RoboEXP System
	Other Design in Interactive Exploration

	Experiments
	Interactive Exploration and Scene Graph Building
	ACSG for Object Retrieval and Manipulation Tasks
	Extension to Mobile Robot
	Remaining Challenges

	Conclusion
	Appendix
	Interactive Exploration
	Usage of ACSG
	Decision-Making Module
	Action Module
	Experiment Settings
	GPT-4V Baseline
	Extreme Illumination and Random Background
	Performance on Different LMMs
	Human Intervention
	Room-Level Household Scenarios

