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Abstract—Bimanual teleoperation often entails complex object-
handling tasks that place substantial demands on human opera-
tors. Although existing research suggests various robot assistance
methods, effectively utilizing multimodal interaction to align hu-
man intent understanding with context-aware reasoning remains
challenging. In this paper, we introduce bimanual teleoperation
with a Large-Language-Model (LLM) based assistant (BTLA)
framework that leverages the strengths of both human operators
and AI-powered robot companions. Our framework employs
an LLM to drive the robot companion, enabling it to assist
the human operator with higher accuracy and providing real-
time feedback in response to voice commands. We evaluate
the effectiveness of our LLM-aided robot assistant through
extensive experiments in bimanual collaborative handling tasks.
Experimental results show that our framework improves task
performance and reduces user mental load by 196.4% over
solo teleoperation and 320.8% over dyadic teleoperation. These
results highlight the potential of our approach to enhance human-
robot collaboration for more efficient and intuitive bimanual
teleoperation systems.

I. INTRODUCTION

Teleoperation has become an increasingly important tech-
nique to facilitate robotic system control in inaccessible or
dangerous environments while ensuring human safety [24, 16].
It has benefited various applications such as space rendezvous
and docking [33], underwater operations [32], and remote
surgery [5]. To address these scenarios, dual-arm robotic
teleoperation has emerged as an effective tool for performing
complex tasks that require higher dexterity and more degrees
of freedom [5]. Compared to single-arm systems, dual-arm
teleoperation offers greater maneuverability, enhanced stabil-
ity, and the capability to perform asymmetric tasks [16, 35].

A single human controlling two robots with both hands (i.e.,
single teleoperation), and two humans each controlling a robot
with their respective dominant hand (i.e., dyad teleoperation)
are the widely deployed interactive patterns for dual-arm tele-
operation. In terms of solo teleoperation, human control per-
formance is highly sensitive to hardware design ergonomics,
cognitive load, and task complexity [12]. The operator needs
to simultaneously manage the motion and coordination of two
robotic arms, which can lead to increased mental workload
and reduced performance [3]. Regarding dyad teleoperation,

human-human communication, synchronization, and control
mechanism design are still challenging in ensuring intuitive
collaboration and avoiding arbitration conflict among humans
[11, 18, 22]. To this end, assistance for human operators,
such as robotic partners, in dual-arm teleoperation is beneficial
for providing sensory feedback, motor control and decision-
making assistance as needed. With this shared mechanism,
operators can focus on performing partial tasks while the
assistive agent manages the remaining [15, 34]. However,
current assistance systems tend to focus on autonomous robot
assistants, which may overlook the human’s intention and
the intuitiveness of the system [8, 17, 27]. Despite extensive
research efforts in the robotic community, robots still struggle
to match human performance in understanding and adapting
to intricate real-world scenarios, particularly in terms of per-
ceiving and responding to human intentions.

To address the aforementioned challenges of bimanual tele-
operation, we propose an intuitive approach that integrates
human teleoperation with an LLM as an assistance system con-
trolling another robot. This approach leverages the strengths
of both human operators and robotic systems, enabling each
to focus on tasks where they excel. The LLM-based robot
companion processes numerical data more efficiently and
accurately than humans, while the human operator handles
complex environmental information, such as visual cues and
high-level decision-making. We set the scene in a bimanual
handling task and conducted experiments with the robot skill
set focused on collaborative handling tasks with limited au-
tonomy at three different levels. The proposed system aims
to balance the strengths of both human operators and robotic
systems, measuring both objective performance metrics and
subjective user experience ratings in tasks that are difficult for
humans to perform through teleoperation but relatively easy
for robots, covering coarse approaching, precise numerical
computations, rapid processing of low-level state information,
and execution of well-defined, repetitive actions.

The main contributions of our work are summarized as
follows:

1) An embodied AI collaborated bimanual teleoperation
approach, entailing seamless human-robot interaction
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Fig. 1. Schematic diagram of the proposed BTLA method.

through the integration of LLM.
2) A comprehensive taxonomy of bimanual teleoperation

tasks based on the level of autonomy and decision-
making authority granted to the robotic assistant.

3) Experimental validation of the BTLA system in bi-
manual teleoperation scenarios, demonstrating improved
efficiency, accuracy, and user satisfaction compared to
other teleoperation approaches.

II. RELATED WORKS

The related work on the topics of bimanual teleoperation
and LLM-based robotics has direct implications for our re-
search and are presented.

Dual-arm teleoperation architecture can be broadly cat-
egorized into two main categories: single-person bimanual
(SPB) teleoperation and dual-human, dual-arm (dyadic) tele-
operation. In SPB teleoperation, one human operator controls
both robotic arms simultaneously. This control paradigm often
leads to a high mental workload for the operator, as they must
manage the coordination and motion of two robotic arms in
real time [28]. Two routes are widely adopted to overcome the
above obstacle from the perspective of humans and robots: (i)
developing more intuitive control interfaces, and (ii) designing
control assistance algorithms. Intuitive human-machine inter-
faces aim to provide operators with natural sensations and
user-friendly means of controlling dual-arm robots. Various
interface technologies have been proposed, such as gesture-
based interfaces [5], virtual reality-based interfaces [10], and
haptic devices [26], reducing the cognitive burden associated
with traditional control methods. Additionally, haptic feedback
algorithms [30, 6, 37] have been proposed to provide force
feedback to the operator, enhancing their situational awareness
and control precision. Control assistance algorithms, on the

other hand, focus on developing intelligent strategies to assist
the operator in managing the dual-arm system, including
mapping strategies that translate human input into efficient
and coordinated robot motions. Shared control approaches
[16, 20, 31, 18] have been introduced to combine human input
with autonomous robot behaviors, assisting the operator in
dual-arm manipulation tasks.

Dyadic teleoperation involves two human operators col-
laboratively controlling two robotic arms, leveraging the ex-
pertise and cognitive capabilities of multiple operators to
tackle complex tasks. In[25], a model for interaction force
computation in dyadic cooperative object manipulation tasks
was proposed. In [7], the performance of human-human dyads
and individuals in a teleoperation environment was compared,
revealing that collaboration does not always lead to improved
performance, especially in teleoperation tasks. Furthermore,
in [19], researchers investigated the role allocation strategy
for a leader–follower relationship in human dyads during
collaborative tasks, providing insights into the dynamics of
human-human collaboration in teleoperation scenarios.

LLM-based methods have shown promising results in en-
hancing interactive capabilities of robotic systems [36, 9, 29].
These methods leverage the strong understanding of the real
world inherent in LLMs to perform high-level planning using
image cues. The planned tasks are then executed by calling
upon lower-level knowledge bases for automation [14, 36, 21],
allowing for more flexibility and adaptation to handle various
tasks and environments. However, these LLM-based methods
may not be ideal for multi-contact teleoperation and physical
interaction. Object grasping and manipulations in complicated
or dynamic environments may be more suitable for human
operators due to their intuitive understanding of the task and



the ability to adapt quickly to minor variations [1, 4]. In such
situations, the overhead of using an LLM for planning and
automation may not justify the potential benefits. Instead of
tasking the LLM with context understanding and decision-
making, our approach leverages the human operator’s expertise
in these areas. We utilize the LLM as a human-robot interface,
concentrating on its core strength of natural language process-
ing to effectively convey human intentions. This enhances the
responsiveness and intuitiveness of the entire system, while the
human operator retains control over the planning and execution
of the task.

III. METHODOLOGY

We first provide the formulation of the bimanual teleopera-
tion problem in Section III-A. Subsequently, we present how
BTLA utilizes LLM to assist humans in bimanual teleopera-
tion tasks.

A. Problem Formulation
The main objective of the proposed method is to enable

the assistant robot to generate human-desired behaviors that
assist in performing tasks efficiently in dual-arm teleoper-
ation scenarios, i.e., a human operator controls one robot
arm (master robot) and an embodied AI system controls
the other robot arm (assistant robot). The assistant robot
receives natural language voice instructions L (e.g., ”help
me push the green blob together”) that specify the desired
assistive behavior. These instructions can be long-horizon,
context-aware, or ambiguously described (e.g., ”move a little
bit upwards”), requiring sophisticated contextual understand-
ing. At any given time t, the assistant robot has access to
the proprioceptive information from both the master robot
(smaster,t) and itself (sassistant,t). Additionally, the assistant
robot can obtain environmental observations (oenv,t) via its
available sensors. Therefore, the problem formulation can be
summarized as follows: given a natural language instruction
l, the assistant robot’s proprioceptive information sassistant,t,
the master robot’s proprioceptive information smaster,t, human
input ut, environment sensing information zt at time t and
environmental observations oenv,t, the embodied AI system
should generate a sequence of low-level skills from the skill
base S and map them to a control policy π that enables the
assistant robot to assist the human operator in performing the
desired task effectively.

To this end, the assistant robot must decompose the high-
level instruction l into a sequence of low-level skills selected
from a predefined skill base S. The chosen skills and their cor-
responding parameters are then mapped to a control policy π,
represented by a skill function BTLA(·). The skill knowledge
in the skill base S can be adapted to accommodate different
task requirements. Therefore, the focus of our work is not
on the acquisition of these skills but rather on the effective
utilization of the available skills to assist the human operator.

B. Bimanual Teleoperation LLM Assistant
As shown in Fig. 1, the BTLA can be divided into three

main components: the human operator, the human-robot in-

Algorithm 1 Embodied AI-Assisted Robot Arm Control
Require: Initial skills base S with predefined skills, LLM

initial language description l
1: Initialize t← 0, skill← None
2: while not finished do
3: if voice command received then
4: skill← LLM (voice command)
5: π ← BTLA (skill, skill parameters,ut, zt)
6: if skill is real-time then
7: repeat
8: Execute π
9: t← t+ 1

10: until voice command to stop
11: else if skill is autonomous then
12: repeat
13: Execute π
14: t← t+ 1
15: until skill is done
16: end if
17: end if
18: end while

terface, and the teleoperation environment. The human op-
erator can concentrate on the current task by observing the
environment via visual feedback, manipulating one robot arm
with teleoperation devices, and soliciting support from the
AI-assisted robot arm for collaborative task execution. We
leverage LLM’s natural language processing capabilities to
enhance HRI, which differs significantly from button-based
methods, as it allows for more nuanced and context-aware
communication between the human operator and the robot
assistant. Unlike a simple skill switcher, the LLM can interpret
complex instructions, understand context, and provide feed-
back when needed. This flexibility enables the robot assistant
to adapt to a wider range of scenarios and user needs.

The AI-assisted robot arm receives human language com-
mands as input and identifies the most relevant skill from its
skill database S, along with the necessary task parameters. The
selected skill, combined with environmental data from sensors
(such as visual information), proprioceptive data, and human
input, forms the control policy that guides the actions of the
AI-assisted robot arm. Within this configuration, the human
operator collaborates with the AI-assisted robot arm within
the teleoperation environment to achieve the desired task
with optimal efficiency and effectiveness. The human operator
provides high-level guidance and control, while the AI-assisted
robot arm contributes its capabilities and understanding of
the context to support the human operator in achieving their
objectives. The process flow of the embodied AI-assisted robot
arm control is outlined in Algorithm 1, which describes how
the system receives voice commands, interprets them using the
LLM, and executes the corresponding skills.

The skill base is tailored to the bimanual handling tasks.
Here, the emphasis lies less on autonomy and more on
bolstering support for the human operator. In collaborative



Fig. 2. Single arm training tasks: (a) target reaching, (b) pick-and-place, and (c) pushing.

tasks, decision-making remains the responsibility of the human
operator, but the robot assumes a greater degree of control
compared to human-dominated tasks. The skill base for col-
laborative tasks should prioritize working with humans and
performing tasks simultaneously. The specific skills required
by the robot are still determined by the human operator.
Collaborative tasks typically have high spatial-temporal co-
herence, which can be better executed by the robot than by
a human. These tasks may also involve smooth trajectory
requirements, low autonomy needs, or easily planned actions.
One example of a skill required in many industrial scenarios
involving bimanual robot arms is symmetrical following [23].
This skill allows one robot to perform a task on one side of a
structure (such as welding or holding inspection transmitters)
while the other robot follows on the opposite side to carry
out complementary tasks (such as providing additional views
from inside or operating inspection receivers). Symmetrical
following requires both robots to move with high consistency
in terms of timing and location, which is less efficient and
accurate when performed through SPB teleoperation or dyadic
teleoperation.

Building upon the skill base and task categorization, our
framework incorporates a mechanism to handle situations
where the robot misunderstands a command or encounters
singularities. To ensure safe and effective operation, the sys-
tem implements a confirmation process before executing any
task. When the robot receives a command, it first interprets
the instruction and generates a plan for execution. Before
proceeding, it communicates this plan back to the human
operator for confirmation. This step allows the operator to
verify that the robot has correctly understood the command
and provides an opportunity to make corrections if needed.
In cases where the robot encounters singularities or potential
issues during task execution, it immediately halts the operation
and seeks guidance from the human operator. This interactive
loop between the human operator and the robot assistant
ensures a robust and adaptable system that can recover from
misunderstandings and navigate complex scenarios effectively,
maintaining the balance between autonomous operation and
human oversight.

IV. EXPERIMENT

The experiments aim to investigate the effectiveness of the
proposed LLM-aided robot assistant framework in teleoperated
bimanual handling tasks. We designed the experiments to
answer the following key questions:

1) Does the proposed framework improve task performance
compared to solo and dyadic teleoperation?

2) Does the proposed framework reduce the human op-
erator’s physical and mental workload in teleoperated
bimanual handling tasks?

To address these questions, we conducted a series of ex-
periments involving the manipulation and transportation of
large, heavy objects using a bimanual robotic system. The
experimental procedure, from operator training to performance
assessment, is illustrated in Fig. 4.

A. Experiment Setup

1) Equipment and Software: Our experiments utilize two
3D systems Touch (previously Phantom Omni) haptic devices
for interaction. The Pybullet API is employed for scene cre-
ation, robot arm control, and object visualization. To minimize
uncontrolled variables that might influence the experiment
results, we designed customized objects using Fusion 360
and converted them into URDF files. For realistic human
voice interactions, we adopted the OpenAI Whisper model for
speech-to-text and text-to-speech (TTS) tasks. We evaluated
three language models: GPT-3.5-turbo, GPT-4, and Mistral-
7B-OpenOrca (a locally running model using GPT4All [2]).
Our tests indicated no significant differences in performance
among these models. Consequently, we selected GPT-3.5-turbo
for our experiments due to its lower cost and faster response
time.

2) LLM Initial Prompt: To optimize the robot assistant’s
understanding of its role and objectives, we implement a set
of predefined rules and instructions as an initial prompt for
the LLM. This approach eliminates the need for users to
communicate these demands before each interaction, enhanc-
ing operational efficiency. The initial prompt configures the
LLM as an AI assistant designed to aid a robot arm in task
execution. It instructs the LLM to generate scripts based on
user’s spoken commands, adhering to a specific JSON format:



Fig. 3. Illustration of BTLA on object handling task: (a) Initial state with both robot arms at rest. (b) Left arm moves independently without following
commands. (c) Right arm, controlled by the robot companion, exhibits symmetrical following behavior. (d) Both arms simultaneously move to the object
pickup position. (e) The robot grippers grasp the object securely. (f) The human operator and the AI-powered robot companion collaborate to transfer the
object to the designated location.

Script: ”Skill”: ”Write the function here.”, ”Description”:
”Include a necessary description about this skill, as if you are
talking to the user directly. Use ’you’ to address the user.”
. The robot assistant is equipped with a comprehensive list
of available skills from the skill database, enabling efficient
matching of user commands with appropriate functions. The
LLM is programmed to provide user feedback on its actions
through the ”Description” field in the JSON script. When
a user’s command corresponds to a known skill, the LLM
generates the relevant script. In cases where no match is found,
the assistant generates a script with an empty function and
a description indicating that no action will be taken. This
structured approach to the initial prompt ensures the LLM-
aided robot assistant’s ability to interpret user command and
provide meaningful feedback which facilitates a more seamless
and effective interaction between the human operator and the
embodied AI system in bimanual handling tasks.

3) Skills: There are two types of skills, autonomous skills
and real-time skills. Autonomous skills are executing actions
in a series and exiting when the whole action is done, such
as Handover() - Handover an object to the master arm; Ap-
proach() - Move the arm to approach an object (e.g. for listing
objects together); Fetch() - Grab an object and bring it to
the master arm. However, the Real-time Skills are continuous
motions and exiting when the user gives the stop command,
like Follow() - Follow the master robot arm (e.g. for pushing
together); SymmetricalFollow() - Act a mirror behavior of the
master robot arm; Move(distance, direction) - Move the arm

(ask user for distance in meters and direction: ”+x”, ”-x”, ”+y”,
”-y”, ”+z”, ”-z”).

B. Participant Training

Training is essential to minimize differences in manipu-
lation abilities among participants and to familiarize them
with the haptic device and simulation platform. Prior to the
experiments, each participant underwent four training sessions
(one-hour intervals between sessions) for three tasks: target
reaching, pick-and-place, and pushing as shown in Fig. 2.
These tasks were progressively ordered from easy to difficult.
In the target reaching task, the goal was to navigate to the
red waypoints. The pick-and-place task required participants
to use the gripper to grasp a square block and transport it to
a target area while avoiding a vertical barrier. The pushing
task involved pushing an object into a designated target area.
Participants were required to complete the tasks within 4
minutes, and 3 minutes, respectively.

C. Experiments Implementation

The task is to grasp the object using two arms cooperatively
and move the object to the appointed platform shown in Fig. 3.
Fig. 3 (a) to Fig. 3 (d) shows the motion from the start position
to the grasp position. Fig. 3 (e) to Fig. 3 (f) shows the motion
to the appointed platform. There are three dimensions to assess
the performance: the coverage rate, the average time cost and
the number of repeated successes. The number of repeated
successes will be recorded if the two used arms can: 1, lift
the object simultaneously; 2, move gradually without falling
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Fig. 5. Views of (a) dyadic teleoperation. (b) robot assisted teleoperation.

the object, 3, put the object steady on the specific platform and
cover above 70% of the goal area. Three types of teleoperation
are tested.

1) SPB Teleoperation: SPB teleoperation is executed as
a comparison experiment to answer the first question. Each
participant controls two robot arms using haptic devices to
grab the object and move it to the goal area. After finishing
the trial, record responses to the NASA-TLX questionnaire.

2) Dyadic Teleoperation: For the second question, dyadic
teleoperation as another comparison experiment is imple-
mented. The participant controls one robot arm and collab-
orates with a constant operator who controls another robot
arm to achieve the same task. After finishing the trial, record
responses to the NASA-TLX questionnaire.

3) BTLA Teleoperation: For our opposed method, partici-
pants control one robot arm and collaborate with an intelligent
agent i.e., a robot assistant to finish the whole task. participants
can tell the agent what they want it to do. Participants are
known the skills that the agent has, but they don’t know the
special keywords/function names that installed in the system.
Participants should use their judgements and natural language
to ask the agent how it helps them to grab the object and move
it to the goal area. After finishing the trial, the experience is
recorded on the NASA-TLX questionnaire.

D. Assessment

The third question can be answered by using questionnaires.
Then analyse the questionnaires that they filled out. To as-
sess participants’ perceptions of their experience using the
Bimanual Teleoperation with LLM-based Assistance (BTLA)
system under various assistance conditions, we administered
two questionnaires. The first questionnaire, shown in Fig. 8,
included nine scales measuring naturalness, satisfaction, per-
ceived robot intelligence, and likeness. The second question-
naire was the NASA Task Load Index (NASA-TLX), which
was completed by participants after finishing the assigned
tasks, as shown in Fig. 7. The NASA-TLX is a widely used
tool for evaluating the subjective workload experienced by
users during the performance of a task [13].

V. RESULTS AND DISCUSSIONS

A. Performance Metrics

To evaluate the effectiveness of the BTLA, we compared
its performance with the Dyadic and SPB scenarios using
three metrics: coverage, success rate, and task completion
time, as shown in Fig. 6. The BTLA scenario demonstrated
the highest mean coverage (0.861) and success rate (0.627)
among the three scenarios, suggesting that the BTLA system is
more effective in successfully completing tasks and covering
a larger portion of the task space compared to the Dyadic
and SPB scenarios. The Kruskal-Wallis test was performed to
assess the statistical significance of the differences in coverage
(p = 0.003) and success rate (p = 0.004) among the scenarios,
and the results indicate the differences in these metrics among
the scenarios are statistically significant. Although the BTLA
scenario exhibited faster task completion times compared
to the other scenarios, the differences were not statistically
significant based on the Kruskal-Wallis test, which yielded a
p-value of 0.117 for the time metric.

Furthermore, a correlation analysis was conducted to exam-
ine the relationship between coverage and success rate. The
analysis revealed a strong positive correlation (0.708) between
the two metrics, indicating that higher coverage is associated



Fig. 6. Box plots for performance (a) coverage (p < 0.05) (b) success rate (p < 0.05) (c) time (p = 0.117) among all subjects for three experimental
scenarios SPB, dyadic, and BTLA.

Fig. 7. Boxplots for NASA-TLX results among all subjects for three experimental scenarios SPB, dyadic, and BTLA, respectively. Rated aspects from
NASA-TLX: mental demand (MD), physical demand (PD), temporal demand (TD), performance (P), effort (E), and frustration (F). (all metrics: p < 0.05).

Fig. 8. Part of post experiment questionnaire examples.

with higher success rates. This finding suggests that the BTLA
system’s ability to cover a larger portion of the task space

contributes to its higher success rates in completing tasks
compared to the Dyadic and SPB scenarios.

TABLE I
DESCRIPTIVE STATISTICS FOR PERFORMANCE METRICS.

Scenario Coverage Rate Success Rate Time (s)

SPB 0.489(±0.22) 0.184(±0.27) 190(±56)
Dyadic 0.721(±0.18) 0.369(±0.22) 163(±95)
BTLA 0.861(±0.11) 0.627(±0.20) 130(±55)

B. Subjective Assessment

For all NASA-TLX metrics (mental demand (MD), physical
demand (PD), temporal demand (TD), performance (P), effort



(E), and frustration (F)), the BTLA scenario exhibited the most
favorable ratings, with lower demands, effort, and frustration,
as well as better perceived performance compared to the
Dyadic and SPB scenarios as shown in Fig. 7. In contrast,
the SPB scenario appeared to be the most challenging, with
higher demands, effort, and frustration, and lower perceived
performance. The Dyadic scenario fell between the BTLA and
SPB scenarios, indicating moderate levels of demands, effort,
frustration, and performance.

The Kruskal-Wallis test results revealed statistically signifi-
cant differences among the three scenarios for all metrics, with
the test statistics being 17.974 for MD (p = 0.000), 14.701
for PD (p = 0.001), 12.276 for TD (p = 0.0002), 15.723 for
P (p = 0.000), 14.228 for E (p = 0.0001), and 11.018 for F
(p = 0.000). The p-values for all metrics were less than 0.05,
providing strong evidence against the null hypothesis of no
difference among the scenarios.

We have also noticed that over 40% of participants reported
that their performance was limited by the restricted 2D camera
view. This limitation was due to either a loss of depth
perception, making it difficult to discern spatial relationships,
or because the images were partially obstructed.

Fig. 9. (A) Likert Scale Ratings. (B) Correlation matrix of performance
metrics.

VI. CONCLUSION

This paper presents a novel LLM-aided robot assistant
framework for collaborative bimanual teleoperation that in-
tegrates a human operator with an embodied AI robot com-
panion to enhance human-robot collaboration and reduce the
operator’s cognitive load. Experimental results demonstrate
that the proposed framework outperforms solo and dyadic
teleoperation in terms of coverage rate, success rate, and
subjective workload assessment, highlighting its potential for
improving task performance and user experience. The strong
correlation between coverage rate and success rate suggests
that the LLM-aided robot assistant’s ability to enable the
human to focus on more precise performance contributes to its
higher success rates. These findings underscore the importance
of leveraging embodied AI systems to create more efficient,
intuitive, and adaptable teleoperation systems for bimanual
handling tasks.
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