
Dialog-based Skill and Task Learning for Robot
Weiwei Gu, Suresh Kondepudi, Lixiao Huang, Nakul Gopalan

Arizona State University
Email: weiweigu@asu.edu, nkondepu@asu.edu, Lixiao.Huang@asu.edu, ng@asu.edu

Abstract—Continual and interactive robot learning is a chal-
lenging problem as the robot is present with human users
who expect the robot to learn novel skills to solve novel tasks
perpetually with sample efficiency. In this work we present a
framework for robots to query and learn visuo-motor robot
skills and task relevant information via natural language dialog
interactions with human users. Previous approaches either focus
on improving the performance of instruction following agents, or
passively learn novel skills or concepts. Instead, we used dialog
combined with a language-skill grounding embedding to query
or confirm skills and/or tasks requested by a user. To achieve this
goal, we developed and integrated three different components for
our agent. Firstly, we propose a novel visual-motor control policy
ACT with Low Rank Adaptation (ACT-LoRA), which enables the
existing state-of-the-art Action Chunking Transformer [28] model
to perform few-shot continual learning. Secondly, we develop
an alignment model that projects demonstrations across skill
embodiments into a shared embedding allowing us to know when
to ask questions and/or demonstrations from users. Finally, we
integrated an existing Large Language Model (LLM) to interact
with a human user to perform grounded interactive continual
skill learning to solve a task. Our ACT-LoRA model learns novel
fine-tuned skills with a 100% accuracy when trained with only
five demonstrations for a novel skill while still maintaining a
74.75% accuracy on pre-trained skills in the RLBench dataset
where other models fall significantly short.

I. INTRODUCTION

Chai et al.2019 define natural interaction as an interaction
between a human and a robot that resembles the way of
natural communication between human beings such as dia-
logues, gestures, etc. without requiring the human to have
prior expertise in robotics. The capability of learning tasks
and acquiring new skills from natural interactions is desirable
for robots as they need to perform unique tasks for different
users. One direction of this interaction channel is well studied
as instruction following [2, 4, 3], where the robot performs
the tasks requested by the human via natural language. Our
work focuses on the other side of this communication channel,
where the robot starts the conversation with human when
it needs their help. This reverse direction of communication
plays an important role for robots to learn with non-expert
human users as it enables robots to convey their lack of task
knowledge to perform tasks in a way that non-expert users
can understand. Furthermore, our framework can leverage the
feedback from users and learn to perform the task.

Human-Robot interaction via language is a well studied
problem [6, 4, 3, 12]. Robot agents have been able to interpret
language instructions from the human users, and perform
visual-motor policies to complete tasks [2, 4, 3]. These meth-
ods rely on the emergent behaviors of large models, and do

not continually learn new skills or add to their task or skill
knowledge. To address this issue, some works have proposed
life-long learning for robot agents [24, 16, 12, 26]. Some
recent works learn neural visuo-motor skills in a continual
setting [26, 27, 18]. However, these approaches are passive
and do not query the user for novel skills that the agent might
need to complete given tasks.

We propose a framework that utilizes dialog to enable
the robot agent to express its need for new skill or task
information actively. When encountering a novel task, our
robot agent starts a conversation with the human user to learn
to execute the task. Throughout the interaction, the robot agent
specifies the help that it needs from the human user via natural
language, such as a human enacting the skill to find a feasible
skill within the existing set of skills to perform the task or
requesting multiple robot demonstrations to learn a completely
novel skill for this specific task. Our contributions are as
follows:

1) We compare ACT-LoRA against the baseline ACT
model on few-shot continual learning on RLBench
dataset. Our model demonstrates its strong adaptability
by achieving 100% success rate on the tasks that it
finetuned on with only 5 demonstrations. Furthermore,
it achieves an average success rate of 74.75% on the
tasks that it is pre-trained on, showing that our policy is
effective in preventing catastrophic forgetting.

2) We present a model that can determine whether a pair
of demonstrations of different embodiments, in our case
human enactment of a skill or a robot demonstration, are
performing the same task. Our alignment model achieves
an overall accuracy of 91.4% on the RH20T dataset on
aligning demonstrations from humans and robot.

II. PROBLEM FORMULATION

We formulate a task solving problem where both the robot
and the human agent can take actions on their turns. There
is a joint physical state s of the world shared by both the
human and the robot. In each turn, n, either the human or
the robot acts, one after the other. Each turn can take longer
than one time step, t, and continues until the robot or the
human indicates a turn to be over. The actions can be physical
actions represented by ah, and ar for the human and the
robot actions respectively, or speech acts lh and lr for the
human and the robot speech respectively for the human-robot
grounded dialog. The problem has an initial state s0 and a
task θ specified by the human using a speech act l0h. Each of
these actions updates the joint physical state s of the world,



What sandwich 
can I make for you?

Make me a 
butter cheese 

lettuce sandwich.

I can show you.

I do not have such 
a skill. Can you 

teach me?

Sure!
Thank you!

Robot done making
a sandwich.

Thank you for 
teaching me.

I do not know 
how to slice cheese.

Great!

(a) (b) (c) (d)

Fig. 1. An example run of our framework in the user study. (a) The user asks the robot to make a sandwich , some of the tasks to make a sandwich are
known but the robot does not know a dynamic skill to make the sandwich, slicing cheese. (b) So the human enacts cutting cheese with their own hands to
show the robot the type of skill needed , but the robot has never seen such a skill before so it asks for help. (c) The user controls the robot to perform said
skill. (d) The robot learns the novel skill from the human demonstration and is able to complete the entire sandwich on its own in the next interaction.

and internal dialog state sd of the robot. The dialog state is
hidden from the human user, but the human receives speech
observations for the same. Over multiple turns and actions
taken by the human and the robot these physical and robot
states update over time. The objective of this turn taking
problem is to complete the task θ. We measure the task
completion rates for this interaction problem. Moreover, in
our specific instance of the problem the human also teaches
behaviors to the robot, we also measure the success of the
individual learned behaviors within the task in simulation.

III. METHODS

The goal of our framework is a robot agent that 1) actively
generalizes its known skills to novel tasks when it is applica-
ble; 2) queries the user for unknown skills; and 3) learns new
skills with only a few instances. When encountered a task θ,
the robot agent first searches for a learned skill using semantic
representation, which comes from the language embedding
of the linguistic description of the skills and tasks. This is
a challenging question as the robot needs to know what it
does not know. This work is performed by our queryable skill
library. If the agent fails to find any usable skill for the task
based on the semantic information, it attempts to search for
a learned skill using skill representations, which come from
human demonstrations and robot trajectories. We developed a
novel sample efficient continual skill learning approach ACT-
LoRA for this task. The robot agent can directly execute the
task τ whenever it finds a learned skill that aligns with τ in
either the semantic space or the skill space, and learns a novel
skill to execute the task otherwise. We use an LLM to enable
the robot agent to interact with the human user based on the
information from the queryable skill library.

A. How to Know What the Robot Does not Know a.k.a. a
Queryable Skill Library

The skill library consists of four parts - a text encoder Etext;
a human demonstration encoder Ehuman; a robot trajectory
encoder Erobot; and a set of learned skills S = {S1, . . . , Sk}.
Each learned skill Si is a tuple of a linguistic description

and a robot trajectory, denoted as Si = (li, τi). The linguistic
representation rli and skill representation rsi of skill Si can be
obtained by encoding li and τi with the corresponding encoder,
denoted as rli = Etext(li), and rsi = Erobot(τi) respectively.

Finding a usable skill from the skill library. The skill
library is provided two inputs to find an appropriate skill to
execute the task θ, the linguistic description lθ and a human
demonstration dθ for the task. We obtain the linguistic or
semantic representation and skill representation for the task
by encoding the linguistic description and the human demon-
stration with the corresponding encoders. We then compute
two sets of similarity scores between the task θ and any
known skill Si for both the linguistic representation and the
skill representation. The state machine within the interaction
module of the agent decides the skill to use to execute the task
θ based on these scores.

We use a pre-trained CLIP as a text encoder Etext. For
Erobot and Ehuman, we first extract features from each frame
using a Resnet-18 [13], and then encode the sequence using a
transformer encoder [25]. The robot trajectory encoder Erobot
and the human demonstration encoder Ehuman are trained to
encode the human demonstrations and robot trajectories into
the same latent space. The two encoders are jointly trained
with tuples (d, τ, y), where d denotes human demonstration
videos, τ denotes robot trajectories, and y is the label of
whether the human demonstration and the robot trajectory is
in the same task. We use a cosine similarity loss to learn
this embedding with a hyperparamter ψ to act as a margin to
declare a human demonstration to be the same skill as a skill
the robot knows. More details about learning this embedding
space are in the Appendix A.

B. Interaction Module using a Large Language Model (LLM)

The dialog state sd in our pipeline is maintained with
an internal state machine. The state machine uses an LLM,
ChatGPT 4 [1], as the natural language generator to produce
speech acts for the robot agent. This state machine with the
LLM has two major functionalities. Firstly, it interacts with the
human user to asks for demonstrations or explanations based
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Fig. 2. Overview of our framework. The LLM serves as the interactive module and understands a user’s feedback. The skill library provides representations
for learned skills and novel demonstrations. The policy model executes the tasks based on the user’s instructions. The agent searches for an executable skill by
comparing the language representation and skill representation of the novel task with those of the known skills using a cosine similarity metric. We integrate
Low-Rank Adaptor(LoRA) with the Action Chunking Transformer(ACT) model as our policy, which is capable of learning fine-grained skills and continually
learning novel skills without catastrophic forgetting.

on the checks from our queryable skill library. Secondly, the
interaction module also interprets the user’s language feedback
to update the dialog state sd. The interaction module is given
the autonomy to continue the dialog with the user until that it
acquires the designated information for the agent. The module
can also explain the dialog state sd with language to the user
explaining the robot’s confusion.

C. ACT-LoRA as Visual-motor Policy

Combining Low-Rank Adaptor with Action Chunk-
ing.Adapter-based methods [14, 21, 11, 17] have exhibited
promising capabilities of light-weight and data-efficient fine-
tuning of neural networks across various domains such as
NLP [14, 11], and computer vision [21]. Liu et al. [18] extend
Low-Rank Adaptor(LoRA) into robotics with TAIL, enabling
a simulated robot to continually adapt to novel tasks without
forgetting the old ones. Unfortunately in our experiments
TAIL [18] fails to provide high precision control on the robot
leading to a lot of failures in even short skills. On the other
hand, Action Chunking Transformer(ACT) [28] is capable of
performing fine-grained tasks with high precision, but cannot
be directly used for continual learning due to catastrophic
forgetting. Therefore, we introduce LoRA adaptor to the ACT
model, obtaining both the precision from action chunking and
the capability of continual learning from the LoRA adaptor.
We want to point out that we are using TAIL [18] as the
baseline in this work as it is the closest continual learning
agent to our approach.

Continual Imitation Learning. Our policy needs to con-
tinually learn new skills from demonstrations throughout the
agent’s lifespan. The robot agent is initially equipped with K
skills {S1, . . . ,SK}. Whenever the robot agent encounters a
task that requires a novel skill Sn, n > K, it needs to adapt its
existing policy π to the novel skill without forgetting any of
the existing skills S ∈ {S1, . . . ,Sn−1}. Provided a number
of demonstration trajectories for each skill, the continual
learning policy of the robot agent can then be optimized with

Model Pre-trained Skills(SR) Few-shot Skills(SR)

ACT-LoRA 74.75 100.0
ACT 1.5 100.0
TAIL 0.25 5.0

TABLE I
EXPERIMENTAL RESULTS ON RLBENCH SIMULATOR. PRE-TRAINED

SKILLS(SR) MEASURES THE POLICIES’ AVERAGE SUCCESS RATE ON THE
8 SKILLS THAT POLICIES ARE PRE-TRAINED ON. FEW-SHOT SKILLS(SR)

MEASURES THE POLICIES’ AVERAGE SUCCESS RATE ON THE 6 NEW
SKILLS THAT THEY ARE FINETUNED ON OVER 50 ROLLOUTS. DETAILED

RESULTS OF EACH SKILL ARE IN APPENDIX A.

a behavior cloning loss, which in this case we use L1 loss
for action chunks following [28]. On top of the policy of
the vanilla ACT model πϕ, the LoRA adaptor introduce a
small set of additional low-rank parameters ϕi for each skill
Si. During the pre-training phase, the additional parameters
ϕ1, . . . , ϕK for skills S1, . . . ,SK are jointly trained with the
model’s parameter ϕ. When we are finetuning with a skill
Sn, n > K, we freeze the model’s original parameters ϕ,
and only allow gradient updates to the parameters from the
task-specific adaptor ϕn. Such finetuning strategy prevents the
policy from catastrophic forgetting the skills that it already
possessed when adapting to novel skills.

IV. EXPERIMENTAL RESULTS

In this section, we present two sets of experimental results.
Firstly, we present the results of our policy on few-shot
continual imitation learning in the simulated RLBench envi-
ronment [15]. These experiment results show that our behavior
cloning model is able to continually to learn novel skills with
only few demonstrations and avoid catastrophic forgetting.
Then, we evaluate our demonstration alignment model on a
subset of the RH20T dataset [10], and demonstrate that we
are able to project demonstrations from different embodiments
into the same latent space.



A. Experiments on Continual Imitation Learning

We evaluate our policy on few-shot continual imitation
learning using the RLBench environment [15]. A total of
14 skills are chosen from the pre-defined skills of the en-
vironment, 8 for pre-training and 6 for continual training.
We train the policy using 1000 trajectories for each of the
pre-training skills, and finetune it using 5 demonstrations
for each of the continual training skills. The SoTA visual
policy model ACT [28] and SoTA continual policy learning
model TAIL [18] were chosen as the baselines for comparison
against our model. Our model learns novel skills with 100%
accuracy while maintaining its pre-trained performance at
74.75% demonstrating its suitability for continual learning. We
observed TAIL [18] to fail in tasks which require precision,
and ACT fail to remember older skills.

B. Experiments with our alignment model

Our alignment model is evaluated on a subset of the RH20T
dataset [10], which includes robot trajectories for diverse range
of tasks and their corresponding human demonstration videos.
Our alignment model achieves 91.4% in overall accuracy in
distinguishing whether a pair of demonstrations are performing
the same task. The detailed results are in Appendix A.

V. RELATED WORK

Skill Discovery and Continual Learning. The area of
visuo-motor continual learning is getting a lot of attention
recently [26, 27, 18]. Wan et al. [26] discover new skills from
segments of demonstrations by unsupervised incremental clus-
tering. Xu et al. [27] learn the skill representation by aligning
skills from different embodiments, and can re-compose the
learned skills to complete a novel combination. Liu et al. [18]
introduce task-specific adapters using low-rank adaptation
techniques [14], preventing the agent from forgetting the
learned skills when learning the new skills. However, these
frameworks assume the presence of the demonstrations for
the new tasks, and only discover skills in a passive fashion.
Our proposed framework actively reasons and requests the
human users for the demonstrations of the unseen skills while
performing the ones it knows. This reasoning is done in
two stages: first the human enacts the behavior, once the
robot has seen this behavior it decides if it can perform the
enacted behavior or not. After this reasoning the robot can
choose to source demonstrations from the human using a
joystick. This is a more natural setup for a language enabled
continual learning agent in the real world. Furthermore, our
agent requires less than ten demonstrations from the user to
discover the new task without forgetting any of the learned
skills which is an improvement over existing passive continual
learning methods [18, 26].

Human-Robot Dialog. Human-Robot dialog is a mature
problem [9, 22, 23, 5]. Traditional methods use statistical
algorithms with a pre-defined grammar, such as semantic
parsing [23, 22], to connect the semantics of the dialog to
the environment’s perceptual inputs. On the other hand, recent
advancements in natural language processing (NLP) have led

to Large Language Models (LLMs) that process natural lan-
guage in free form. Grounded with perceptive inputs from the
environment, these LLMs have been used in robotics research
generate executable plans [2]. Furthermore, Ren et al. [20] and
Dai et al. [9] use LLMs to ask for human feedback for the
robot agents demonstrating the importance of dialog. However,
these approaches leverage planning with LLMs where as we
are attempting to learn continuous visuo-motor skills on the
robot by asking for help.

Active Learning. Our work is related to active learning,
where a learning agent actively improves its skills by asking
a human for demonstrations [23, 19, 7, 8]. Defining an
appropriate metric that triggers the request for assistance or
information gathering becomes the key research problem in
this domain. Thomason [23] measure the semantic similarity
between a newly introduced concept and the known concepts
to ask for classifier labels. Chernova and Veloso [7, 8] train
a confidence classifier conditioned on the current state of the
agent, and request expert demonstrations when the confidence
score does not meet a pre-defined threshold. Maeda et al.
[19] use the uncertainty of Gaussian Processes(GPs) as the
metric to trigger the request for assistance. These existing
methods reason over the semantic information in a task such
as the goal condition or features of classifiers that identify the
goal condition. We use a cosine distance metric to measure
similarity for both the semantic information from language
and the behavior information of a skill.

VI. LIMITATIONS

We present an approach to teach skills to robots using
techniques from active learning and continual learning while
using language as a modality to query and reason over the
skills known to the agent. We acknowledge that we need to
conduct a user study to showcase that our agent can function
with non-expert users. The turn-taking in our framework is
tightly controlled, and not dynamic. Our ACT-LoRA approach
while being sample efficient has been observed to have issues
with heterogeneous demonstrations. We also want to compare
such continual learning approaches with pre-trained policy
approaches such as RT [4] to scale up the policy learning
approach while maintaining sample efficiency allowing for
novice users to personalize skills for their robots.

VII. CONCLUSION

In conclusion, we present a novel framework for robot
agents to learn task relevant knowledge and skills from in-
teractions with human users. To the best of our knowledge
this is the first work to demonstrate skill learning while
querying a user with dialog to express doubt. By maintaining
metrics in semantic and skill similarity, our agent can actively
interact with human users and adapt its known skills to novel
tasks. Moreover, our framework is able to learn a completely
new skill (at 100%) with only a few robot demonstrations,
without affecting the performance of any existing skills (at
74.75%)fulfilling continual learning requirements in robotics.
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APPENDIX

A. Experiment Details

Model Precision Recall F1 Accuracy

Resnet + Transformer 88.0± 2.2 95.9± 2.0 91.8± 2.0 91.4± 2.11

TABLE II
EXPERIMENTAL RESULTS OF OUR ALIGNMENT MODEL ON ALIGNING

HUMAN VIDEOS WITH ROBOT TRAJECTORIES ON SUBSET OF THE RH20T
DATASET [10].

Detailed results of the alignment model on RH20T. We
present the detailed results of the alignment model in Table II.
We conduct five-split evaluation on the dataset, and report
the mean score and standard deviation of each metric. Each
model is trained on 80% of the trajectories and evaluated on
the other 20%. In total, we use 1240 robot trajectories and
1193 human demonstrations across 98 tasks of the RH20T
dataset configuration 5. As shown in Table II, our model
achieves 91.8% on the F1 metric, and 91.4% on the overall
accuracy metric. This strong performance of the alignment
model enables the robot agent to actively adapt learned skills
to perform novel task, or to understand that it needs to learn
a novel skill from seeing a single human demonstration.

Detailed results of the continual learning policy on each
task of the RLBench. We present the per-task success rate
of the policies in the RLBench simulator. Table III shows the
performance of the three policies on each pre-trained task after
fine-tuning, and Table IV demonstrates the performance of
the policies on the tasks that they are finetuned on. All the
three models are trained to predict joint positions for the same
number of gradient steps. In the pre-train phase, each model
is trained with 1000 robot demonstrations from each pre-train
task for 1000 epochs. In the finetune phase, each model is
trained with 5 robot demonstrations from each finetune task for
20000 epochs. Notice that due to the limitation of the visual-
motor policies, we use a static location for all the finetune tasks
during both training and evaluations. However, for all the pre-
train tasks, we use randomized locations during both training
and evaluation. As presented in the tables, TAIL achieves a
near 0% success rate on majority of the tasks except for close
fridge. This is because that close fridge is a relatively easier
task in the environment, and the agent has a non-trivial chance
to accidentally hit the fridge door and close it even if it is doing
random behaviors. On the other hand, the baseline ACT model
achieves a strong 100% success rate on the tasks that it is
fine-tuned on, demonstrating its strong capability of learning
fine-grained control. However, it also achieves a extremely
low success rate on all the pre-train tasks after fine-tuning.
This shows that ACT suffers from catastrophic forgetting and
can no longer perform the pre-train tasks after fine-tuning. In
comparison, ACT-LoRA achieves a 100% success rate on the
fine-tune tasks, while still being able to perform on all the
pre-train tasks with an overall success rate of 74.5%. This
experiment result demonstrates that ACT-LoRA inherited the
capability of fine-grained controls from ACT, and the ability

to prevent catastrophic forgetting from the additional Low-
Rank Adaptors, and hence is suitable for the use case where
fine-grained control and continual learning are needed.

B. Implementation details of the dialogue state machine

We describe the details of the implementation of the di-
alogue state machine. Algorithm 1 is the pseudo code of
the dialogue state machine. The robot agent first initializes
the conversation with the human user, and repeatively asks
questions until it obtains a clear list of instructions from this
initial conversation. Then, the agent attempts to execute the list
of actions sequentially until all the instructions are finished.

During execution of each task, if the agent finds that the
task can be executed with one of the known skills, the agent
directly executes the task with the corresponding policy. If the
robot agent fails to directly find an executable skill for the task,
it first searches for a usable skill in the semantic space. If it
finds a skill that has a higher similarity score than the threshold
in the semantic space, it proposes to the human user to use
this skill to execute the task, and proceeds after obtaining the
agreement from the human user. Otherwise, if the agent fails
to find a usable skill, or the human user rejects the agent’s
proposed skill, the agent asks the human user for a human
demonstration, and attempts to find a usable skill in the skill
space based on the human demonstration. The skill search in
the skill space is similar to that of the semantic space. If the
agent finds a skill that has a higher similarity score than the
threshold in the skill space, it proposes the skill to the human
user. If the human user agrees with such skill proposal, the
agent learns that a known skill can be adapted to the new task
and executes the task. Otherwise, if the agent fails to find an
aligned skill or its proposal is rejected by the human user, it
realizes that it doesn’t possess the skill to execute the task, and
will ask for several robot demonstrations to train a completely
new skill for the task.

The LLM serves as the interface between the robot agent
and the human user. Whenever the robot agent is in a state
that it needs inputs from the human user, it prompts the LLM
with the current state of the agent and the information needed
from the human user. The LLM then initiates a dialogue
with the human user, and continues the dialogue until it
retrieves the information needed by the robot agent. Such share
autonomy between the state machine has more reliability than
fully relying on the LLM, and can fully exploit the linguistic
capability of the LLM.

C. Implementation details of the alignment model

We describe the details of the implementation of the align-
ment model. Following the notation in the main paper, we use
Erobot, and Ehuman to denote the robot trajectory encoder and
human demonstration encoder respectively. We also use ϵt and
ϵv to denote the different thresholds for training and validation.
To reduce the computational cost, we downsample all the
human demonstrations and robot trajectories to 100 timesteps
uniformly, and use image inputs from a single camera for both



Model close box open microwave meat on grill open door push button phone on base toilet seat up water plants

ACT-LoRA 82.0 32.0 86.0 96.0 84.0 72.0 66.0 80.0
ACT 0.0 0.0 8.0 0.0 0.0 0.0 0.0 4.0
TAIL 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

TABLE III
THE SUCCESS RATE OF ACT-LORA, ACT, AND TAIL ON EACH PRE-TRAINED TASK IN THE RLBENCH ENVIRONMENT.

Model open box close fridge meat off grill toilet seat down take lid of sauce pan close microwave

ACT-LoRA 100.0 100.0 100.0 100.0 100.0 100.0
ACT 100.0 100.0 100.0 100.0 100.0 100.0
TAIL 2.0 26.0 0.0 0.0 2.0 0.0

TABLE IV
THE SUCCESS RATE OF ACT-LORA, ACT, AND TAIL ON EACH FINE-TUNE TASK IN THE RLBENCH ENVIRONMENT, WHERE EACH MODEL IS ONLY

FINETUNED ON 5 DEMONSTRATIONS FROM EACH TASK ON THE LIST.

the human demonstrations and robot trajectories. We use a 6-
layer transformer encoder with 8 heads for both the human
demonstration encoder and the robot trajectory encoder. Both
encoders use a resnet-18 feature extractor to extract features
from the raw image inputs. The robot trajectory encoder also
takes in proprioceptive inputs from each time-step. During
training, we minimize the cosine embedding loss between the
human demonstration and robot trajectory with the training
threshold ψt, denoted as following:

L(d, τ, y) =

{
1− cos(Ehuman(d), Erobot(τ)) if y = 1,

max(0, cos(Ehuman(d), Erobot(τ))− ϵt) if y = −1.

During inference, two trajectories are said to be the same skill
if their cosine similarity is above the threshold ϵv . For the
experiment of RH20T, we use ϵt = 0.5 and ϵv = 0.7, and train
the alignment model for 10000 gradient step with a batch size
of 16.

D. Implementation details for ACT-LoRA

We describe the details of our implementation of the ACT-
LoRA policy. Following Zhao et al. [28], we train with a
CVAE architecture and discard the additional encoder during
inference. For both the CVAE encoder and the state encoder,
we use a 4-layer transformer encoder with 8 heads. We extract
features from raw image inputs from multiple cameras using
resnet-18. These visual features are fed to the transformer
encoder along with the proprioceptive inputs. For the decoder
side, we use 6-layer transformer decoder with trainable em-
beddings. We also use a chunk size of 100 as it gives the best
performance empirically [28]. The same configuration is also
used for the baseline ACT model. As for the configuration of
the low-rank adaptors, we follow TAIL [18] and use a rank
size of 8. Each skill is associated with a set of unique adaptor
weights.

E. Implementation details for TAIL

As there is no publicly available source code for TAIL [18],
we tried our best attempt to re-implement TAIL for a fair
comparison. To reduce the computation cost for the original
TAIL model, we use a transformer encoder in replacement to
the GPT-2 temporal decoder to speed up the training process.
Furthermore, due to the limited time, the LoRA weights are
only introduced to the transformer encoder, but not to any
pre-trained feature extractors, including the CLIP text encoder
and CLIP image encoder. Apart from these changes, we
choose hyperparameters as close as possible to the original
TAIL paper [18]. The TAIL model takes in linguistic task
descriptions, image observations, and proprioceptive inputs
over history timesteps. We first extract the feature of the
raw image inputs and the linguistic task descriptions using
the pretrained CLIP image and text encoder. Then, we use
a FiLM layer to inject the linguistic features into the image
features and the proprioceptive inputs. These inputs are treated
as the input tokens of the transformer encoder. Then, we use
an MLP layer to project the encoded token into parameters for
a Gaussian Mixture Model(GMM). During training, the model
is optimized by minimizing the negative log-likelihood loss of
the ground truth actions. During inference, we sample from
the distribution of the GMM predicted by the model.



Algorithm 1 The Algorithm for the Dialogue State Machine
Input:

O0: The initial observation of the agent
S = {S1, . . . , sK}: The initial skill library of the agent
πψ, ψ = {ψ0, ψ1, . . . , ψK}: Policy π parameterized by ψ, composed of shared weights ψ0 and skill specific weights
{ψ1, . . . , ψK}
ϵtext: The threshold to determine whether the two skills are the same in the semantic space
ϵskill: The threshold to determine whether the two skills are the same in the skill space

1: A ← GetListOfActionsFromDialogue()
2: while A is not empty do
3: a← A[0]
4: if a ∈ S then
5: ExecuteTask(a)
6: else
7: Si, s← SearchSkillLibraryWithSemanticSimilarity(a)
8: if s ≥ ϵtext then
9: response ← ProposeSkillToHuman(Si)

10: if response=agree then
11: ExecuteTask(Si)
12: Continue ▷ skip line 13 to line 20
13: d←AskForHumanDemonstration(a)
14: Sj , s

′ ← SearchSkillLibraryWithSkillSimilarity(d)
15: if s′ ≥ ϵskill then ProposeSkillToHuman(Sj)
16: if response=agree then
17: ExecuteTask(Sj)
18: Continue ▷ skip line 19, 20
19: r ←AskForRobotDemonstration(a)
20: FinetunePolicyForNewSkill(πψ ,r)
21: A ← A[1 :]
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