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(a) The Pipeline of RAM. (b) Zero-Shot Manipulation.

(c) One-Shot Visual Imitation. (d) LLM/VLM Integration.
Fig. 1: (a) We extract unified affordance representation from in-the-wild multi-source demonstrations, including robotic data,
HOI data, and custom data, to construct a large-scale affordance memory. Given language instructions, RAM hierarchically
retrieves and transfers the 2D affordance from memory and lifts it to 3D for robotic manipulation. (b-d) Our framework shows
robust generalizability across diverse objects and embodiments in various settings.

Abstract—This work proposes a retrieve-and-transfer frame-
work for zero-shot robotic manipulation, dubbed RAM, featuring
generalizability across various objects, environments, and em-
bodiments. Unlike existing approaches that learn manipulation
from expensive in-domain demonstrations, RAM capitalizes on a
retrieval-based affordance transfer paradigm to acquire versatile
manipulation capabilities from abundant out-of-domain data.
First, RAM extracts unified affordance at scale from diverse
sources of demonstrations including robotic data, human-object
interaction (HOI) data, and custom data to construct a compre-
hensive affordance memory. Then given a language instruction,
RAM hierarchically retrieves the most similar demonstration
from the affordance memory and transfers such out-of-domain
2D affordance to in-domain 3D actionable affordance in a
zero-shot and embodiment-agnostic manner. Extensive simula-
tion and real-world evaluations demonstrate that our RAM
consistently outperforms existing works in diverse daily tasks.
Additionally, RAM shows significant potential for downstream

applications such as automatic and efficient data collection, one-
shot visual imitation, and LLM/VLM-integrated long-horizon
manipulation. For more details, please check our website at
https://yxkryptonite.github.io/RAM/.

I. INTRODUCTION

A longstanding goal in robot learning is to develop a
generalist robot agent capable of performing diverse robotic
manipulation tasks on common household objects in real-
world settings. Crucially, such an agent must learn to gen-
eralize to manipulate unseen objects in unseen environments
with unseen embodiments. Traditional approaches to achieving
this goal often involve manually collecting extensive expert
demonstrations through teleoperation, scripted policies, and
similar methods, followed by imitation learning from these
datasets [45, 27]. However, these methods are costly and
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labor-intensive, requiring significant human effort and prior
knowledge of various objects and tasks. As a result, the
scarcity of usable real-world data challenges the generalization
of policies trained on these datasets to unseen objects or
environments.

On the other hand, apart from real-world and synthetic
robotic datasets [45, 27, 25, 41] that agents can directly
learn manipulation policies from, there exist vast amounts
of out-of-domain data rich with actionable knowledge, rang-
ing from Hand-Object Interaction (HOI) data [10, 37, 21,
35], to Internet-scale videos of daily activities, AI-generated
videos [34], and even sketches [53]. Despite efforts to leverage
these data sources for robotic manipulation [33, 2, 63], learn-
ing from out-of-domain samples remains elusive due to signif-
icant domain shifts. Addressing this issue requires rethinking
how to unify and utilize the actionable knowledge hidden
within these heterogeneous and often noisy data sources. To
that end, we identify that the key is to represent the actionable
knowledge as transferrable affordance, i.e., ‘where’ and
‘how’ to act [42, 60]. By efficiently extracting and transferring
these affordances from diverse data sources to our target
domain, we can overcome domain-specific hurdles and data
scarcity. In addition, the fast development of generalizable vi-
sual foundation models (VFMs), trained on enormous Internet
images, offers a streamlined solution to seamlessly connecting
diverse data realms with our target domain, facilitating the
distillation of rich affordance from these data sources to enable
generalizable zero-shot robotic manipulation.

Therefore, we introduce RAM, a Retrieval-based
Affordance transfer approach for generalizable zero-shot
robotic Manipulation. RAM utilizes a retrieve-and-transfer
paradigm for everyday robotic tasks in a zero-shot manner.
First, we extract 2D affordance from diverse data sources
like robotic datasets, HOI datasets, Internet images, etc.,
to construct a comprehensive affordance memory. Upon
receiving a monocular RGBD observation of an unseen
object in an unseen environment, RAM employs an effective
hierarchical retrieval pipeline, which selects the most similar
demonstration from the affordance memory and leverages
VFMs to transfer the pixel-aligned 2D affordance to the
target unseen domain. To convert the 2D affordance to
executable robotic actions, we further develop a sampling-
based affordance lifting module. This module lifts the
2D affordance to a 3D representation that includes a
contact point and a post-contact direction, which is directly
executable by various robotic systems using off-the-shelf
grasp generators [57, 13] and motion planners [9, 52].

Extensive experiments in both simulation and the real world
show that our method surpasses existing works by a large
margin (§ IV-C), thereby confirming its effectiveness and su-
periority in leveraging large out-of-domain data. Notably, our
method is embodiment-agnostic and data-efficient—qualities
that prior methods are struggling with—which is substantiated
by abundant experiments conducted across various robotic
platforms. Furthermore, we showcase the versatility of our
retrieval-based framework through its applications in several

key areas in § IV-E, such as automatic and efficient data
collection, one-shot visual imitation conditioned on human
preference, and seamless integration with LLMs/VLMs for
long-horizon tasks with free-form human instructions.

In summary, the key contributions of our proposed RAM
are three-fold:

• We propose a retrieval-based affordance transfer frame-
work for zero-shot robotic manipulation, significantly
outperforming prior works, both in simulation and the
real world. Our key insight is to transfer affordances in
2D, followed by a module to lift them into 3D for direct
execution.

• We propose a scalable module for extracting unified
affordance information from diverse out-of-domain het-
erogeneous data for retrieval. This module can potentially
generalize to other robotic tasks beyond the manipulation
considered by this work.

• Our pipeline enables a variety of intriguing downstream
applications, including policy distillation, one-shot visual
imitation, and LLM/VLM integration to facilitate future
research.

II. RELATED WORKS

A. Affordance for Robotic Manipulation

Visual affordance, which indicates where and how to inter-
act with diverse objects from visual inputs, plays an important
role in robotic manipulation thanks to its simplicity and
interpretability. Point cloud-based methods [42, 60, 58, 20]
focus on learning a point-wise score map as the representation
of affordance and utilize it to regress end-effector poses.
However, these methods face severe sim-to-real gaps due to
the depth noises of RGBD cameras in the real world. Other
series of works such as HOI-Forecast [33] and VRB [2]
aim to learn affordance from human videos in an end-to-end
manner. However, the scarcity of training data diversity hinders
their generalization to unseen tasks and objects. Compared
to these existing works, our method leverages the unified
affordance representation extracted from diverse data sources
and is thus generalizable to a wide range of unseen objects
and environments in the real world.

B. Zero-Shot Robotic Manipulation

Due to the issues mentioned above, how to manipulate
diverse kinds of objects in a zero-shot manner remains a
challenging topic. Existing works [24, 32, 22, 23, 18] at-
tempt to solve this problem by leveraging the reasoning
abilities of LLMs/VLMs. However, they heavily rely on pre-
programmed heuristic action primitives to execute low-level
tasks like “grasping a handle”. Other works [4, 5, 59] leverage
intermediate representations as conditions to the policy to
achieve data-efficient imitation learning and can generalize to
in-domain tasks without direct demonstrations. However, these
methods still require collecting in-domain demonstration for
test-time training and thus cannot be generalized to in-the-wild



domains. Compared to these works, our method is training-
free, neglecting the need for heuristic policies or test-time
training.

C. Learning from Demonstrations

Recent years have witnessed the rapid progress of imi-
tation learning (IL). Multiple teleoperation systems and al-
gorithms [69, 8, 46, 16] have shown great capabilities to
imitate human demonstrations smoothly. There are also meth-
ods [51, 45, 27, 55] that leverage VLM or co-train data
priors to reduce the requirement for demonstrations. Other
series of works [14, 40, 12, 56, 11, 1, 17, 68, 39, 50]
learn manipulation from demonstrations based on retrieving
in-domain demonstrations for IL or direct trajectory replay.
However, these methods fail to generalize to the wild without
in-domain demonstrations. Recent work Robo-ABC [26] tries
to leverage CLIP [47] and Stable Diffusion [49] to retrieve and
transfer contact points, but it is limited to HOI and table-top
grasping scenarios and cannot perform object manipulation in
the 3D space. Our method, instead, not only makes the most
of existing diverse out-of-distribution data sources to guide
affordance transfer in 3D but also generalizes to a diverse set
of in-the-wild tasks in a zero-shot manner.

III. METHOD

To address the aforementioned data scarcity, the core of
RAM involves transferring out-of-domain knowledge to our
unseen target domain. To achieve so, we introduce a retrieve-
and-transfer approach that capitalizes on visual affordance. In
contrast to an existing work VRB [2] that only predicts 2D
affordance in the pixel space, RAM generates executable 3D
affordance A3D = (c3D, τ3D) where c3D, τ3D ∈ R3 are the
3D contact point and the post-contact direction respectively.

First, RAM extracts affordance information from diverse
out-of-domain data sources, constructing an affordance mem-
ory M (§ III-A) in source domain S. Then, given a monocular
RGBD image (IT , D) from the novel target domain T along
with a language instruction L, RAM leverages a three-step
hierarchical retrieval procedure (§ III-B) to identify the most
similar demonstration from M. Leveraging VFMs, we estab-
lish image-pair correspondences to transfer the 2D affordance
from the demonstration in source domain S to our target
domain T (§ III-C). Finally, through a sampling-based method,
the 2D affordance in the target domain is lifted back to 3D,
resulting in the 3D affordance A3D (§ III-D), which can be
directly executed through grasp generators [57, 13] and motion
planners [9, 52].

A. Affordance Memory

To achieve generalization across objects, environments, and
embodiments, RAM focuses on building a broad affordance
memory. Our method systematically extracts affordances from
multiple sources in a scalable manner to construct a compre-
hensive memory, M, that encompasses a wide range of skills
and objects. This memory integrates subsets of demonstrations
from real-world or synthetic robotic data MR, HOI data MH,

(a) Robotic Data (b) HOI Data (c) Custom Data

Fig. 2: Affordance annotation of demonstrations from various
data sources. We extract unified affordance information auto-
matically (for robotic and HOI data) or with minimal human
effort (for custom data).

and custom data MC. To unify affordance information from
these varied sources, each entry in the affordance mem-
ory includes an object-centric RGB image IS which is the
initial frame of interaction, a set of 2D waypoints C =
(c2D0 , c2D1 , c2D2 , · · · ) indicating the contact point c2D0 and post-
contact trajectories, along with a task category T expressed
in natural language. Therefore, the constructed affordance
memory can be denoted as:

M = MR ∪MH ∪MC

= {(IS , T, C) | C = (c2D0 , c2D1 , c2D2 , · · · )} .
(1)

As shown in Fig. 2, for different data sources, we employ
different strategies to extract and annotate affordance:

1) Robotic Data: In the real world or simulators, obtaining
camera parameters and robot proprioception is straightforward.
This allows us to seamlessly project the end-effector’s 3D
position onto a 2D image plane. For affordance extraction,
we start with the first frame of a rollout for the image IS ,
ensuring the object is unobscured. Then, we identify the frame
when the robot’s gripper closes, and use the end-effector’s 2D
position at this moment as the contact point c2D0 . Subsequent
frames are used to trace post-contact trajectories. In our
experiments, we utilize DROID [27] dataset for robotic data
subset construction.

2) HOI Data: Human demonstrations, compared to robotic
data, are often considered more intuitive and efficient. For
affordance extraction, we begin by identifying and grounding
video segments where relevant events occur. Similar to the
approach with robotic data, we select the initial frame from
each segment to serve as IS . Then, the contact point and
post-contact trajectories are determined by averaging the hand
keypoints across frames. We found this simple strategy can
generate reliable hand waypoints. We utilize the annotations
of video segments and hand keypoints from the HOI4D [35]
dataset to construct the subset while those annotations can
also be easily acquired through action segmentation [62] and
hand-object segmentation [67] techniques.

3) Custom Data: Beyond the automatic collection of af-
fordance information from robotic and HOI data, we also
consider custom data that are manually annotated with min-
imal human effort. This allows us to tailor our manipulation
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Fig. 3: Illustration of our hierarchical retrieval pipeline. RAM
performs task retrieval, semantic filtering, and geometrical
retrieval sequentially to retrieve the most similar demonstration
from memory.

strategies for novel objects by augmenting the affordance
memory with newly annotated demonstrations. The annotation
process can be realized by selecting the start and end points on
an RGB image, followed by automatic interpolation between
the two points.

Notably, our affordance memory is built scalably and semi-
automatically, featuring manipulation customization with min-
imal human intervention. Putting all subsets from different
data sources together, we easily establish an affordance mem-
ory M spanning diverse objects, environments, and embodi-
ments, enabling our method’s generalizability across various
settings.

B. Hierarchical Retrieval

To correctly manipulate a new object, humans often turn
to their memory for similar scenarios for guidance. Inspired
by how humans think and Retrieval-Augmented Generation
(RAG) in LLM inference [30], as illustrated in Fig. 3, we
proposed a three-step hierarchical retrieval pipeline to ef-
fectively retrieve the most similar demonstration from the
agent’s affordance memory M in a coarse-to-fine manner, and
leverage the demonstration as a hint to guide the manipulation.

1) Task Retrieval: Based on L (e.g., “Please open the
drawer to find some utensils.”), we leverage a language model
(e.g., CLIP [47] or GPT-4 [43]) to retrieve the task T that the
instruction falls within (“open the drawer”) and extracts the
object name N (“drawer”). If the memory doesn’t contain
the queried object, the model will reason the object geometry
and propose a task (or multiple tasks) that potentially shares
similar affordance.

2) Semantic Filtering: Based on the retrieved tasks, we can
get the source RGB images {IS} of all demonstrations. Then
for each source image, we can calculate its joint similarity

with the target observation image IT and the object name N ,
in the form of:

similarity =

cos(CLIPv(I
S),CLIPv(I

T )) · cos(CLIPv(I
S),CLIPt(N)),

(2)

where CLIPv(·) and CLIPt(·) are CLIP [47] visual and text
encoders, and cos(·) measures the cosine similarity between
two embeddings. Then, we set a threshold to filter out demon-
strations that have very low similarities—which can be caused
by a lack of intended objects, low-quality segmentation masks,
low-light environments, and so on—to improve the robustness
of affordance transfer process.

3) Geometrical Retrieval: Large amounts of previous re-
search work [54, 66, 3] reveal the emergent correspondence
from large-scale unsupervised visual foundation models [7,
47, 49, 44]. The core concept is that the deep dense fea-
ture maps produced by visual foundation models contain
rich geometrical and semantic information that can be used
for dense keypoint correspondence matching. However, as
illustrated in [65, 26], these visual foundation models often
struggle to understand the orientation of instances. Therefore,
it is essential for our method to find a demonstration where
the object is oriented similarly to the target image. To this
end, after task retrieval and semantic filtering, we calculate
Instance Matching Distance (IMD) [65] using SD feature maps
to perform geometrical retrieval from the remaining demon-
strations to find the one with the most similar viewpoint.
More details can be found in the supplementary material. By
leveraging the hierarchical retrieval, we can retrieve the most
suitable demonstration for manipulation, both semantically and
geometrically. Experiment results show that it performs better
than a single-stage retrieval pipeline, found at Table III.

C. 2D Affordance Transfer

After getting the most similar demonstration from the
affordance memory, we aim to transfer the 2D affordance from
the source domain S to the target domain T in a generalizable
way. Given the source image IS and its contact waypoints C,
leveraging dense feature maps by visual foundation models,
we first perform per-point correspondence matching to obtain
the corresponding waypoints in the target image as shown in

2D Affordance 
Transfer

3D Affordance 
Sampling

3D Affordance 
Selection

Fig. 4: Affordance transfer and lifting. Given a retrieved
demonstration, RAM transfers the affordance in 2D via corre-
spondence matching and obtains 3D affordance by sampling.



Fig. 4. We then employ RANSAC algorithm [15] to remove
outliers of target waypoints and fit a line in the 2D space. In
this way, we obtain the 2D contact point c2D, which is the
first transferred waypoint, and the post-contact direction τ2D,
leading to the 2D affordance A2D = (c2D, τ2D). By doing so,
we can establish a robust affordance transfer from S to T .

D. Sampling-Based Affordance Lifting

The 2D affordance A2D = (c2D, τ2D) obtained from the
affordance transfer step cannot be directly used in the 3D
space. Therefore, we propose a simple yet effective sampling-
based method to lift the affordance to the 3D space, which
can be executed by the end-effector in the 3D space.

Based on the contact point c2D and the partial point cloud
generated from the depth map D, we back-project the 2D
contact point to 3D to get the 3D contact point c3D. Then we
crop the point cloud around c3D to acquire the local geometry
of the contact area. Based on the cropped point cloud, we first
estimate the normal vector of each point and then perform
K-Means algorithm [36] to cluster these normals and get Top-
k cluster centers. Then we back-project these cluster center
normal vectors into the 2D space through camera parameters
and select the one with the least included angle with the 2D
post-contact direction τ2D. In this way, we can obtain the 3D
affordance A3D = (c3D, τ3D) for robotic manipulation.

To map the 3D affordance to concrete robot actions, we
sample dense grasp proposals on the cropped point cloud
leveraging off-the-shelf dense grasp generators [57, 13] and
select the closest grasp from c3D. After grasping, we can uti-
lize position control to move the end-effector in the direction
of τ3D, or leverage impedance control in the real world based
on the real-time impedance force feedback as in [31] to adjust
the end-effector and safely perform the actions.

IV. EXPERIMENTS

A. Experimental Setup

To verify the effectiveness of the proposed method, we
conduct extensive evaluations in both simulation and real-
world settings.

In simulation, we adopt IsaacGym [38] as the simulator,
GAPartNet [19], and YCB [6] datasets as object assets, and
a flying Franka Panda gripper for manipulation. We collected
over 70 objects in 10 categories and evaluated them on 3 kinds
of tasks, including Open, Close, and Pickup, comprising
13 different tasks. For each task, we conduct 50 experiments.
The camera viewpoint is fixed, and the objects’ positions and
rotations are randomly initialized within a certain range. For
Pickup tasks, several distractor objects are also randomly
placed. A manipulation success is defined by whether the DoF
of interest (articulation joint or height) exceeds a threshold.

In the real-world setting, we conduct experiments that
involve interacting with various real-world household objects.
We employ a Franka Emika robotic arm with a parallel gripper
and utilize an on-hand RealSense D415 camera to capture the
RGBD image. In addition, we also utilize a Unitree B1 robot
dog equipped with a Z1 arm and a RealSense D415 camera to

show our method’s cross-embodiment nature [28, 64], which
is covered in § IV-E2.

B. Baseline Methods

We compare our method against three baselines, namely
Where2Act [42], VRB [2], and Robo-ABC [26], where they
represent training-based, 2D affordance-based and retrieve-
and-transfer methods respectively. Where2Act [42] and
VRB [2] are trained on vast amounts of point clouds and
egocentric HOI images, respectively, while Robo-ABC and
our method are training-free.

To adapt the baseline methods to target tasks, we faithfully
conduct necessary modifications.

• Where2Act is designed for articulated object manipula-
tion only, which takes input as an object point cloud and
predicts point-wise actionability scores, action proposals,
and action scores with three separate models. Another
drawback of this method is that it processes the point
cloud in a task-agnostic way, leading to ambiguity of
the generated affordance. We adopt it to the evaluation
tasks by 1) randomly sampling the contact point from
the predicted top-5 actionable points, 2) proposing 100
actions using the action proposal model, and 3) selecting
the action with the highest action score.

• VRB predicts the contact point and direction only on
2D images. To make it applicable in real manipulation
tasks, we lift the estimated 2D affordance to 3D using
our proposed sampling-based affordance lifting module.

• Robo-ABC is initially designed for object grasping only,
where only the contact point of a source demonstration
retrieved by CLIP feature similarity is transferred on
the 2D image, followed by AnyGrasp for grasp pose
selection. For a fair comparison, we feed it with our
collected affordance memory. To extend it for articulated
objects, we use the proposed 2D affordance transfer mod-
ule to transfer both the contact point and post direction.
Subsequently, we follow the same procedure as in our
method to lift 2D affordance to 3D.

C. Results and Analysis

For simulation and real-world settings, we adopt Success
Rate (SR) as the major evaluation metric. Results of simulation
experiments are shown in Table I, from which we can see that
our method outperforms all baselines in the vast majority of
tasks, yielding an average success rate of 52.62%. Compared
to our method, Where2Act [42] largely fails in the opening
tasks that require a precise contact point and grasp pose.
VRB [2] also suffers from providing precise contact points
for grasping, leading to suboptimal performance in opening
and picking up tasks. Our reimplemented and improved Robo-
ABC [26] yields the second-best performance. We further note
such a performance of Robo-ABC significantly depends on our
affordance transfer and lifting modules.

We also compare our method with Robo-ABC [26] in the
real world on 6 tasks with 5 rollouts each, as shown in
Table. II. Results show that our method also outperforms the



Object AVG

Task O C O C O C O O O P P P P /

Where2Act [42] 2 34 2 54 2 68 2 0 / / / / / 20.50
VRB* [2] 8 62 6 56 16 66 4 12 10 18 28 44 60 30.77

Robo-ABC* [26] 20 58 22 60 30 46 30 28 26 40 54 66 60 41.54
RAM (Ours) 38 68 32 76 32 50 66 54 38 46 56 72 64 52.62

TABLE I: Success rates of object manipulation for different methods in the simulation environment. O, C, and P stand for Open,
Close, and Pickup, respectively. * denotes necessary modification for 3D adaptation. RAM consistently and significantly
outperforms baseline methods in the vast majority of tasks. More details, such as icon-object correspondences and affordance
memory statistics, can be found in the supplementary material.

Object AVG

Task O O O P P P /

Robo-ABC* [26] 2/5 1/5 1/5 3/5 4/5 4/5 50.0
RAM (Ours) 3/5 2/5 3/5 3/5 4/5 5/5 66.7

TABLE II: Success rates of object manipulation for different
methods in the real-world environment. RAM yields a favor-
able real-world performance.

baseline due to our more effective retrieval pipeline. It also
shows our method’s cross-domain nature and easy sim-to-real
transfer. Real-world videos can be found in the supplementary
material.

Apart from quantitative studies, we also show some qualita-
tive results on affordance transfer with respect to multiple data
sources in Fig. 5. Visualization results show that our method
can establish a more reliable affordance transfer, leading to
more robust performance.

D. Ablation Studies

Probing deeper into our framework designs, we perform
extensive ablation studies on various components. All studies
are conducted on Open tasks of drawers, cabinets, and
microwaves, with 20 episodes each. The metric of Distance
to Mask (DTM) is reported along with SR as in [26], which
measures the distance of the transferred contact point to the
object handle in pixel space.

1) Ablation on Hierarchical Retrieval.: As shown in Ta-
ble III, the removal of any submodules in the hierarchical
retrieval pipeline results in a degradation of SR and DTM. We
further observed the deactivation of geometrical retrieval leads
to a significant SR drop from 38.3% to 26.7%, showing the
importance of geometrical alignment in affordance transfer.

2) Cross-Task Transfer.: Although our affordance memory
construction pipeline enables scalable skill acquisition from
various data sources, it is still valuable to probe how RAM
performs when the target task is beyond the scope of its
memory. We evaluate this by blocking the given task from
the affordance memory. As shown in the 4th row of Table III,
RAM maintains a decent success rate of 25.0%, demonstrat-
ing an impressive cross-task transfer capability when facing
unseen tasks.

Ablation Method SR ↑ DTM ↓

w/o Task Rtrvl. 31.7 4.99
w/o Sem. Filtering 33.3 6.69
w/o Geom. Rtrvl. 26.7 9.36

Cross-Task 25.0 9.33

SD → CLIP [47] 15.0 57.4
SD → DINOv2 [44] 23.3 5.09

SD → SD-DINOv2 [66] 36.7 3.04

Full Pipeline 38.3 3.39

TABLE III: Ablation studies on different components of our
method.

3) Effects of Different VFMs.: We further replaced Stable
Diffusion (SD) used in our pipeline with other visual founda-
tion models to investigate the effects of different VFMs for
affordance transfer. As depicted in Table III, we found that
SD [49] performs best on SR, and SD-DINOv2 [66] performs
best on DTM, both surpassing CLIP [47] and DINOv2 [44] by
a large margin. Although SD-DINOv2 [66] excels in contact
point matching, we choose SD for our pipeline due to its
robustness in post-contact correspondence, higher success rate,
and less inference time.

4) Effects of Data Amount. : Ablation on the data amount
in our retrieval memory M is conducted as shown in Fig. 6.
We reduced the retrieval memory for each task from a min-
imum of 10% to full data. The results indicate that as the
data amount increases, the overall performance also improves.
Notably, using 50% of original data yields comparable results
to using full data, demonstrating the data efficiency of RAM.

E. Downstream Applications and Discussions

In this section, we aim to show that our method has the po-
tential to enable a broad spectrum of downstream applications,
tackling general robotic problems.

1) Policy Distillation.: As a zero-shot robotic manipulation
method, conditioned on language instructions, our RAM can
perform fully autonomous exploration of the surrounding
environment by effective trial-and-error without any human
priors or reward shaping. Therefore, we can use the proposed
RAM for efficient annotated data collection and learn an end-
to-end policy from the affordance knowledge. To that end,
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Fig. 5: Qualitative comparison of generated 2D affordance. Source demonstrations retrieved by RAM are shown in the first
row. RAM outputs better affordance than baselines.
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Fig. 6: Performances of different data amounts for retrieval.
RAM can already achieve favorable performance with only
half of the full data, indicating its data efficiency.

we leverage our zero-shot pipeline to automatically collect
successful demonstrations of opening a drawer, a cabinet,
or a microwave. Then, we learn an ACT policy [69] from
these demonstrations. As shown in Table IV, using only 50
demonstrations for each task, our distilled policy can achieve
a +35.0% performance boost over the zero-shot pipeline,
indicating the huge potential for automatic and scalable high-
quality data collection for policy learning.

2) One-Shot Visual Imitation with Human Preference.:
Apart from utilizing out-of-domain demonstration retrieval
for manipulation, our method is naturally adaptable for one-
shot visual imitation for better controllability, given a specific
in-domain or out-of-domain demonstration. For example, as

Task AVG

VRB [2] 1/20 1/20 2/20 6.67
Zero-Shot 8/20 4/20 6/20 30.0
Distilled 12/20 14/20 13/20 65.0

TABLE IV: Policy distillation results on success rate. RAM
performs fully autonomous exploration to collect high-quality
demonstrations efficiently for policy learning.

shown in Fig. 1c, given a tissue box with human preferences
of picking up the tissue paper or tissue box, our method
can act correspondingly to perform different visual imitations.
Another example of Tom and Jerry shows that our method is
able to bridge the great domain gap between the real world
and cartoon images, thanks to the generalizability of visual
foundation models.

3) LLM/VLM Integration.: Our method can also be easily
integrated with LLMs/VLMs for open-set instructions [29] and
long-horizon tasks, by decomposing them into smaller ones
suitable for affordance transfer and other action primitives. As
shown in Fig. 1d, given an instruction (“Clear the table.”),
we can leverage a VLM [61] to interpret and decompose it
into several actions and primitives and leverage affordance
transfer for certain actions to behave in a human-oriented way.
This enables more flexible tasks with higher complexity. More
details can be found in the supplementary material.



V. CONCLUSIONS

We propose RAM, a novel pipeline for generalizable zero-
shot robotic manipulation. At the core of RAM is a retrieval-
based affordance transfer and lifting mechanism that effec-
tively distills actionable knowledge from large out-of-domain
data to an unseen target domain. This framework can poten-
tially generalize to other robotic tasks beyond manipulation,
highlighting its versatility. In addition to the major experiments
where RAM outperforms its counterparts by large margins, we
also demonstrate the flexibility of RAM through its applica-
tions in several key areas.

VI. LIMITATIONS

Despite compelling results, RAM shares certain limitations
with prior works. For long-horizon tasks, it takes multiple
steps for our method to chain the actions, which might
generate less natural long-horizon behaviors. Also, our method
struggles with complex actions, such as screwing. Future
works to address these issues include integrating better founda-
tion models for task planning and developing more advanced
affordance transfer methods that directly lift 2D trajectories
into 3D space to enable more complex tasks.
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APPENDIX

A. Real-Robot Rollouts

Dynamic videos of real-robot rollouts can be found
in the supplementary video and at our website:
https://yxkryptonite.github.io/RAM/.

B. Data Collection and Affordance Extraction

1) Robotic Data: We adopt DROID [27] as our source
of robotic data, which includes 76,000 expert trajectories of
robots conducting daily tasks, along with corresponding task
instructions. To extract affordance information from DROID,
we first query instructions for tasks of interest. For example,
for the task ”open the drawer,” we perform a hard search to
filter out instructions that do not include the action ”open” and
the object ”drawer.”

Next, the filtered instructions are sorted based on the
L2 distances between their language embeddings and the
query embedding. We generate these embeddings using the
”text-embedding-3-small” model of OpenAI. Based
on the sorted instructions, we then select the Top-k episodes
for further affordance extraction.

To extract affordance information from these selected
episodes, we identify the cartesian position when the gripper
is closed as the 3D contact point. We then track the gripper’s
position for the following 10 time steps or until the gripper
stops moving for consecutive steps. This provides us with the
3D post-contact trajectory. Using the provided camera param-
eters, we project the 3D contact point and the post-contact
trajectory onto the first frame of each episode where the object
is unobscured. Note that some affordance demonstrations are
further refined manually by adding an offset or being removed
due to inaccurate camera parameters. Should accurate camera
calibration be available, the manual correction is not necessary.

This method ensures a precise and reliable extraction of
affordance information from the DROID [27] dataset. Note
that this method can also adapt to other robotic datasets (real-
world or synthetic), such as [45, 25, 41].

2) HOI Data: In addition to the details in the main text, we
further note that we only average the hand keypoints within the
object mask to determine the contact point and shift the post-
contact trajectory accordingly. This ensures that the contact
point is within the object for robust affordance transfer.

Note that this affordance extraction procedure can also be
applied to other data sources where hand-object interactions
are involved, such as more HOI datasets [10, 37, 21], vast
amounts of unannotated human egocentric videos on the
Internet, and user-provided demonstrations.

3) Custom Data: The annotation process for custom data
affordance has been discussed in the main text. Additionally,
the sources of custom data are highly diverse and configurable.
For our experiments, we annotated object images of our inter-
est obtained by simply searching from the Internet (Google,
YouTube, etc.).

Notably, custom data can also come from a variety of
sources, ranging from user-captured images, cartoon images,

https://yxkryptonite.github.io/RAM/


AI-generated content, and even sketches, etc., demonstrating
the flexibility and diversity of our data sources. This flexibility
allows for a wide range of potential applications and extends
our affordance memory’s scalability to a greater extent.

4) Affordance Memory Statistics: The statistics of our af-
fordance memory can be found in Table V.

Task Name Icon Data Source Size

Open the drawer DROID 30
Close the drawer DROID 20
Open the cabinet DROID 12
Close the cabinet DROID 6

Open the microwave DROID 42
Close the microwave DROID 10
Open the dishwasher Custom 10
Open the refrigerator Custom 20

Open the trashcan Custom 20
Pickup the pot DROID 11

Pickup the mug HOI4D 149
Pickup the bowl HOI4D 252
Pickup the bottle HOI4D 78

Total / / 660

TABLE V: Affordance memory statistics.

C. Implementation Details

1) Feature Extraction Using Foundation Models: We use
different foundation models as visual feature extractors, in-
cluding:

• Stable Diffusion (SD) [49]. As illustrated in [54], given
an original image x0, we first add noise of time step t to it
to move it to distribution xt, and then feed it to the stable
diffusion network fθ along with t for denoising to extract
the intermediate layer activations as the diffusion features
(DIFT). We use the same configuration as in [54].

• DINOv2 [44]. Extracting DINOv2 features is imple-
mented by feeding the original image to the DINOv2
model and extracting the intermediate layer activations
of DINOv2 ViT during the feed-forward process.

• SD-DINOv2 [66]. As in [66], we first extract SD features
and DINOv2 features and then do L2 normalization on
them to align their scales and distributions. After that, we
concatenate these two features together to get the SD-
DINOv2 feature.

• CLIP [47]. Similar to DINOv2, We extract dense CLIP
features by utilizing the intermediate layer activations of
CLIP ViT.

2) IMD Metric Calculation: As in [65], Instance Matching
Distance (IMD) is originally proposed to examine pose pre-
diction accuracy. Given a source image IS and a target image
IT , their normalized and masked feature maps FS and F T ,
and a source instance mask MS , the IMD metric is defined
as:

IMD(IS , IT ,MS) =
∑

p∈MS

∥∥FS(p)−NN(FS(p), F T )
∥∥
2
,

(3)

where p denotes a pixel within the source instance
mask, FS(p) is the source feature vector at pixel p, and
NN(FS(p), F T ) denotes the nearest neighbor vector in the
target feature map F T with respect to the source feature
vector. IMD measures the similarity of two images via the
average feature distance of corresponding pixels [65]. Using
IMD in the geometrical retrieval stage, we can accurately
retrieve the demonstration where the object is oriented in the
most similar way as in the observation.

3) Baseline Methods:

• Where2Act [42] is designed for articulated object ma-
nipulation only, which takes an object point cloud as
input and predicts point-wise actionability scores, action
proposals, and action scores with three separate models.
Another drawback of this method is that it processes the
point cloud in a task-agnostic way, leading to ambiguity
of the generated affordance. We adopt it to the evaluation
tasks by 1) randomly sampling the contact point from
the predicted top-5 actionable points, 2) proposing 100
actions using the action proposal model, and 3) selecting
the action with the highest action score.

• VRB [2] predicts the contact point and direction only on
2D images. To make it applicable in real manipulation
tasks, we lift the estimated 2D affordance to 3D using
our proposed sampling-based affordance lifting module.

• Robo-ABC [26] is initially designed for object grasp-
ing only, where only the contact point of a source
demonstration retrieved by CLIP [47] feature similarity is
transferred on the 2D image, followed by AnyGrasp [13]
for grasp pose selection. For a fair comparison, we feed
it with our collected affordance memory. To extend it for
articulated objects, we use the proposed 2D affordance
transfer module to transfer both the contact point and post
direction. Subsequently, we follow the same procedure as
in our method to lift 2D affordance to 3D.

D. Experiment Details

In the simulation, we utilize a flying Franka Panda gripper
for simplicity. We utilize cuRobo [52] motion planner for
position control of the gripper.

In the real world, we adopt two different robotic systems.
In the Franka Emika robotic arm setting, we leverage an on-
hand RealSense D415 camera for RGBD perception and utilize
MoveIt! [9] motion planner for the transformation from the
target end-effector pose to joint position trajectories. In the
Unitree robot dog setting, we leverage a Unitree B1 dog with
a Z1 arm, along with a Robotiq 2F-85 parallel gripper. The
RealSense D415 camera is also on-hand mounted, and we
control the arm using the Z1 SDK for delta cartesian-space
control.

For grasp generation, we utilize AnyGrasp [13] to produce
grasp proposals, along with GSNet [57] with a relatively low
graspness score threshold and collision threshold for more
dense grasp proposals in case there is no grasp pose close
enough.



E. Downstream Application Details

1) Training ACT Policy: For policy distillation, we utilize
an ACT policy [69] to perform imitation learning from our
self-collected demonstrations. ACT is based on CVAE Trans-
former architecture and adopts the idea of action chunking
to mitigate compounding errors that are common in behavior
cloning (BC). More details can be found in their original
paper [69].

We use 5 RGB views (5× 640× 480× 3) and the robot’s
proprioception as observation. We set the chunk size to 60,
and the latent space dimension to 512. We use L1 loss plus
KL divergence regularization for supervision. The number of
training iterations is set to 200K, and we set the learning rate
to 1× 10−5 and batch size to 8.

2) One-Shot Visual Imitation Details: For one-shot visual
imitation conditioned on human preference, we pick out
demonstrations either from our own in-domain demonstrations
or from out-of-domain cartoon images (Tom and Jerry in this
case). We ground and choose the first frame of interaction for
IS and use the custom data annotation method for affordance
extraction. We then skip the hierarchical retrieval step and di-
rectly use these chosen demonstrations for affordance transfer
and lifting, followed by 3D affordance execution.

3) LLM/VLM Integration Details: For LLM/VLM integra-
tion, we utilize GPT-4V (gpt-4-vision-preview) [61]
for task decomposition and scene understanding. We also use
Grounded-SAM [48] for object detection and segmentation to
produce 3D bounding boxes of objects in the scene.

Specifically, we define 3 basic primitives: grasp(),
move_to(), and release() for VLM output. Note that
these three primitives do not involve heuristics on specific
object manipulation. Other than these primitives, when the
VLM finds out there are relevant demonstrations in the af-
fordance memory, it will schedule the proposed RAM system
as a retrieval-augmented module to perform the action as a
whole, followed by other defined primitives.

An example of our prompt and the VLM output is shown
in Fig. 7.

===========

You are an intelligent robot dog that has an arm with a parallel gripper 
for object manipulation.

You are given a human instruction and a scene observation. Your task is 
to correctly manipulate the objects safely conditioned on the 
instruction.

===========

You have a series of primitives and demonstrations you can leverage to perform the task. Based on the instruction, you can freely decompose it into 
several sub-tasks that are easier to finish and then chain them together.

First, you are endowed with 3 primitives, which are:
1. grasp(), which takes in object name, detects the object, moves to a graspable pose, and closes the gripper.
2. move_to(), which takes in a 6D pose and does motion planning to it.
3. release(), open the gripper to release the holding object.

The calling format should be like release(), etc.

Apart from the primitives, you also have an affordance memory, which contains lots of tasks that already have plenty of demonstrations. You are also 
equipped with a powerful robotic system called RAM, which can utilize those demonstrations in your affordance memory to directly perform 
corresponding sub-tasks, without calling the primitives. The tasks in your affordance memory are:

- Open: drawer, cabinet, microwave, dishwasher, refrigerator, trashcan
- Close: drawer, cabinet, microwave
- Pickup: pot, mug, bowl, bottle

The calling format should be like Open_drawer(), etc.

For the instruction and observation, please output a sequence of actions or primitives in the format of function calling as above. And finally, you 
should convert the sequence into a python list for convenience.

===========

A basic example:

Human instruction: Please open the drawer and pick up the utensil.
Observation: A closed drawer.

Your output:
<agent>
+++
First, I will decompose the instruction into several sub-tasks. The instruction is 'Please open the drawer and pick up the utensil.', so I need to 
first open the drawer, and then pick up the utensil.
Sub-tasks:
1. open the drawer
2. pick up the untensil
+++
Then, for each subtask, I will see whether it can directly be performed using my affordance memory.
For 1, there are demonstrations regarding opening drawers, so I will directly use it.
For 2, there are no demonstrations for utensils, but picking up bottle is similar. Although usable, I will use primitives to ensure safety.
Action sequence:
1. Open_drawer()
2. grasp(utensil)
3. move_to(utensil_above_position)
4. move_to(release_position)
5. release()
+++
Finally, I will convert the sequence into a python list:
<output>
['Open_drawer()', 'grasp(utensil)', 'move_to(utensil_above_position)', 'move_to(release_position)', 'release()']
</output>
+++
</agent>

===========

Now you need to clear this table, please find a feasible way of doing that. Follow the example above:

Prompt

VLM OutputHuman instruction: Please clear the table.
Observation: There is a bottle on the table, and a trashcan with cups and bottles next to it.

<agent>
+++
First, I will decompose the instruction into several sub-tasks. The instruction is 'Please clear the table', so I need to first pick up the bottle 
from the table, move it to the trashcan, and release it.
Sub-tasks:
1.Pick up the bottle from the table.
2.Move the bottle to the trashcan.
3.Release the bottle into the trashcan.
+++
Then, for each subtask, I will see whether it can directly be performed using my affordance memory.
For 1, there are demonstrations regarding picking up a bottle, so I will directly use it.
For 2 and 3, I will use the primitives to ensure the correct and safe movement to the trashcan and releasing the bottle.
Action sequence:
1.Pickup_bottle()
2.move_to(trashcan_position)
3.release()
+++
Finally, I will convert the sequence into a python list:
<output>
['Pickup_bottle()', 'move_to(trashcan_position)', 'release()']
</output>
+++
</agent>

Fig. 7: Example prompt and VLM outputs of our LLM/VLM
integration system.
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