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Abstract—For effective interactions with the open world,
robots should understand how interactions with known and
novel objects help them towards their goal. A key aspect of this
understanding lies in detecting an object’s affordances, which
represent the potential effects that can be achieved by manipulat-
ing the object in various ways. Our approach leverages a dialogue
of large language models (LLMs) and vision-language models
(VLMs) to achieve open-world affordance detection. Given open-
vocabulary descriptions of intended actions and effects, the useful
objects in the environment are found. By grounding our system
in the physical world, we account for the robot’s embodiment
and the intrinsic properties of the objects it encounters. In our
experiments, we have shown that our method produces tailored
outputs based on different embodiments or intended effects.
The method was able to select a useful object from a set of
distractors. Finetuning the VLM for physical properties improved
overall performance. These results underline the importance of
grounding the affordance search in the physical world, by taking
into account robot embodiment and the physical properties of
objects.

I. INTRODUCTION

To enable an intelligent robot to operate in the open-world,
it needs to reason about how interacting with objects in
the environment could contribute to its goal [9]. A crucial
aspect of this capability is the robot’s awareness of object
affordances: understanding which actions can be executed
on an object and what effects those actions produce. The
encountered objects could be both novel or well-known.

Various previous works created models that endow robots
with these reasoning skills by training on affordance datasets,
where (regions of) objects are annotated with the actions that
it allows [13, 22, 21]. However, the datasets are annotated
from a human point-of-view, and these approaches thus fail to
address how the embodiment of the robot affects affordances.
A door handle can only be turned if the robot has the correct
type of manipulator. Moreover, these datasets solely consider
object-action pairs and do not take the effects into account.
For example, in Padv2 both a surfboard and a bed have the
affordance to lie on [21], but if the intended effect is to
have the robot float on water only the surfboard is useful.
Therefore, we believe that inclusion of the intended effect
provides relevant task context, that is vital to distinguish which
objects afford useful actions to the robot.

Embodied AI addresses both issues since it takes task
context and robot embodiment into account. State-of-the-art
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models such as DreamerV3 [10], Octopus [19] and SayCan [1]
have shown impressive performance to resolve what actions a
robot should take to complete a (potentially complex) task,
including situations where it needs to find and manipulate
objects in the environment. However, these models consider
only a very limited number of actions or skills that the robots
can execute to keep the planning tractable. For example,
DreamerV3, Octopus and SayCan would not be able to rotate
the cap of a water bottle to retrieve water, since this specific
grasp-and-rotation action is not in the list of possible actions.

Our approach to open-vocabulary affordance detection con-
siders a much wider range of actions. Yet, it keeps planning
tractable by only returning an object that affords the action
if it (1) contributes to the intended effect, and (2) the object
can be manipulated given the robot embodiment. Following
the work on Socratic Models [4], we propose a dialogue be-
tween a Large Language Model (LLM) and Vision Language
Model (VLM). Given an open-vocabulary action and task, the
dialogue finds the objects in the given image that can help the
robot reach its goal. When reasoning about relevant objects,
we were inspired by [17] to have the dialogue explicitly take
physical properties of the object into account. The novelty is
that we prompt the LLM which objects provide the required
affordance, while taking into account the limitations posed by
the robot embodiment and the physical properties of object
candidates as found by the VLM.

The contributions of this paper are as follows. (1) We
develop a method for open-world affordance detection, where
action, object and effect are all open-vocabulary. (2) We
leverage out-of-the-box foundation models to reason about
how embodiment of the robot and physical properties of the
objects affect affordances. (3) We validate the efficacy for
physical properties, show the limitations, and how finetuning
can improve this. (4) In the experiments we show that the
dialogue is able to more accurately select useful items from a
set of distractors when the LLM takes physical properties of
the object into account, and the VLM is finetuned on detecting
objects with these properties, in an experiment with a real-life
robot.

II. RELATED WORK

Foundation models provide a generalized ability to reason
about the physical world using everyday knowledge, under-
standing the behaviour and properties of objects (physical
commonsense reasoning, [6]). However, physical grounding
remains a challenge, while it is essential: a robot should know
about the physical conditions of the objects of interest. For



Fig. 1: A socratic dialogue enriched with a physicality-
grounded VLM can reason about relevant objects for the given
task and action.

instance, the weight of the objects determines which ones
can be picked up, whereas the material determines how to
manipulate them (e.g. amount of exerted force). For this
purpose, PG-VLM [8] improved the prediction of physical
properties of BLIP-2 [11]. BLIP2 is a foundation VLM, trained
on a huge set of text-image pairs. However, it was shown
that it could not estimate physical properties yet; the current
very broad pretraining does not provide specialized knowledge
about the object. PG-VLM incorporates such knowledge by
instruction-tuning on physically grounded annotations.

LLMs specifically have previously displayed semantic rea-
soning capabilities [18]. Affordance learning usually takes
place via detecting visual representations or imitation learning
[2]. Most robotic foundation models are however tailored to
a specific embodiment [7] and focus on movement or motion
physics of objects [16].

Dialogue models or Socratic Models are employed to
support exploratory thinking through questioning [4]. They
allow back and forth interaction between foundation models
as a dialogue in order to retrieve open-vocabulary affordances
without fine-tuning [20].

The approach outlined in this paper also bolsters recent
advancements in vision-language-action models such as RT-2
[3] and RT-2-X [5]. Where these developments enable robots
to execute open-vocabulary actions, our work addresses where
in the environment such open-vocabulary actions could be
executed by leveraging open-vocabulary affordance detection.

III. APPROACH

A. Problem Definition

Given a particular goal and environment, the robot should
be capable of interacting with objects in the environment, so
that it reaches the goal. Therefore, we consider the problem of
detecting the objects in the environment that afford the robot

to take relevant actions towards its goal. As we operate in
the open world, we require action and goal descriptions to be
open-vocabulary.

B. Dialogue Overview

By chaining LLMs and VLMs, the specification of objects,
actions and goals can all be done in free-form text. Figure 2
provides a detailed overview of the dialogue implementation.
The LLM is prompted to acquire a set of objects that allow for
the action or goal, while taking the constraints into account
that are posed by the robot embodiment, mission requirements
(e.g. safety) and properties of the objects (e.g. material).
The VLM is queried to find the objects that have the right
properties in the images captured by the robot’s camera.
The found objects are checked by the LLM regarding which
properties they should have in order to be successful.

C. Dialogue Configuration

The LLM is configured with two variables to ground its
reasoning in the real world. The first variable is information
about robot embodiment and the second one is which physical
object properties the LLM should consider to assess if an
object will be relevant to the completion of the goal.

Robot: To take the robot embodiment into account, we
provide a textual description of the robot. This allows the LLM
to reason about the robot’s capabilities and limitations when
suggesting objects to interact with. This description is based on
the specifications of the robot platform and includes properties
such as robot type (e.g. wheeled, legged), dimensions (e.g.
height, width), type of manipulator and weight:

Robot = {type → quadruped,

weight → 50kg, · · · ,
height → 50cm}

(1)

Objective: The goal and requirements are specified:

Requirements = {goal → climb on,

conditions → {safe, reliable} }
(2)

Note that the conditions can be defined in a soft manner,
because the LLM can deal with such descriptions.

Objects: The physical properties of an object determine for
a large part which interactions are allowed, e.g.: a robot might
be able to stand on a metal box, but not on a paper box. We
specifically ask the LLM to consider what object properties
are relevant for the given action and goal, such that the VLMs
can subsequently find only those object instances that have
these properties. We provide a list of the properties and values
that the VLMs on the robot could potentially detect, such as
material types and colors.

Properties = {colors → {blue, · · · , green}, · · ·
material → {plastic, · · · ,metal} }

(3)



Fig. 2: The dialogue between an LLM (left) and VLM (right) reasons about what object in the given scene would give the
quadruped robot the ability to climb to a better viewpoint.

TABLE I: Intended effect: For the same Action, but different intended Effects, our method suggests different objects.

Action Contain to get: Stand on to:
Effect liquids from A to B groceries from A to B increase robot’s height float on water

Bowl ✓ ✓ - -
Box, Bucket ✓ ✓ ✓ -
Blender, Can, Carton, Cup ✓ - - -
Jar, Kettle, Mug, Tray, Vase ✓ - - -
Bag, Belt - ✓ - -
Bench - ✓ ✓ -
Bottle, Ladder, Stool, Book - - ✓ -
Basket - ✓ ✓ ✓

TABLE II: Embodiment; For a different embodiment or action, our method suggests other object properties.

Small robot stands on Large robot stands on Large robot places a small object on

Basket {plastic, metal} {plastic, metal} {plastic, metal}
Bench {plastic, metal} {plastic, metal} {plastic, metal, wood, glass}
Box {plastic} {plastic} {plastic, metal, wood, paper}
Book {plastic, paper} {} {}
Ladder {plastic, metal} {plastic, metal} {}
Stool {plastic, metal, wood} {plastic, metal} {plastic, metal, wood, paper}

TABLE III: Adaptation: Adapting a VLM to the properties of objects is effective, increasing mAP.

Wood Paper Plastic Metal
VLM Basket Stool Ladder Bench Box Stool Basket Ladder Basket Stool Bench Avg.

As-is 0.12 0.44 0.32 0.56 0.07 0.10 0.13 0.21 0.28 0.43 0.28 0.27
Physicality 0.53 0.66 0.37 0.66 0.46 0.13 0.25 0.34 0.32 0.43 0.48 0.42



TABLE IV: Generalization: The adapted VLM improves the prediction (measured by mAP) of properties of unseen objects
(mAP).

Plastic Glass Wood Metal
VLM Lamp Crate Hammer Lamp Laptop Lamp Crate Lamp Crate Laptop Laptop Avg.

As-is 0.45 0.05 0.15 0.12 0.29 0.11 0.02 0.42 0.11 0.17 0.43 0.21
Physicality 0.73 0.14 0.18 0.13 0.38 0.12 0.11 0.51 0.19 0.51 0.65 0.33

D. Reasoning

During runtime, the dialogue has as input a set of images
that were collected of the environment, a (sub)goal specifi-
cation and a desired action. Its output is a set of predictions
of the objects that afford the desired action and contribute to
reaching the goal.

The LLM is used in chain mode, such that earlier prompts
and responses are stored as context. Our dialogue starts by in-
forming the LLM of the context from the previous subsection:

I am a <robot : type}> with

<robot : {weight, · · · , height}>
(4)

The LLM is prompted with the question which N objects
can reach the goal. Its response is a text that includes a list
of objects. The text is parsed to extract the names of the
objects that are potentially suitable. The VLM is tasked to
find these object names by prompting it with these names as
labels. The threshold is set low (0.3) to avoid false negatives.
For all object candidates provided by the VLM, the LLM is
prompted whether the specific object can solve the task.

The LLM is queried for the object properties that are
relevant to solve the task. For instance, object color is not
relevant to climb on the object, but its material is. For the set
of properties that is considered relevant, the specific instances
are retrieved. E.g., object materials can be metal, wood, plastic,
etc. The LLM is prompted which combinations of the object
class with the relevant properties can solve the task. For
instance, a prompt ‘can the robot stand on a metal box in
a safe and reliable manner?’ More formally:

Can I <goal> using a <property> <object>

in a <conditions> manner?
(5)

The response is parsed by extracting affirmative or negative
words to understand if the object-property combination is
suitable for the task at hand. The VLM is prompted for the
set of suitable object-property combinations.

VLM(image | <property> <object>) →
{([xi

1, y
i
1, x

i
2, y

i
2], c), · · ·}

(6)

Here are xi
1, yi1 the x, y of the upper-left position in the

image, xi
2, yi2 the x, y of the lower-right position in the image,

and c the confidence value. These predictions are the output
of our dialogue.

IV. EXPERIMENTS

We analyze the capabilities of our method, by answering
the following questions:

1) For a given action, will it search for different objects
when the intended effect is different?

2) For another embodiment of the robot, will it search for
different objects with other properties?

3) Can a VLM designed for object detection be finetuned
to estimate object properties? Does that generalize to
unseen objects?

4) How well does our method find the right objects in the
wild?

A. Setup

The LLM is ChatGPT 3.5 [14]. The VLM is Grounding
DINO [12], because it can detect objects (i.e. localization).
PG-BLIP [8] is also interesting, but it can only classify images
(i.e. no localization) and it is a very large model which
is disadvantage for deployment on a robot. For evaluation,
we consider the PACO image dataset [15], because it has
annotations of the objects, parts and their properties including
materials. We also include an experiment with the SPOT robot
in our Open-World Robotics lab.

B. Effect-specific Objects

For a given action, but for a different intended effect, our
method suggests different objects. Table I shows the results
after evaluating Equations 4 and 5 for the respective Actions
and Effects in the table header (in a combined prompt of
Action + Effect in Equation 5). When the desired effect is to
get liquids from one location to another location, the intended
action is contain, and suitable objects are a Bowl, Can or Vase.
However, if the action is the same, but the intended effect is
to bring groceries to another location, a Can is not suitable,
while a Bag or Basket are suitable. Likewise, for a robot that
is tasked to stand on something, the intended effect matters.
There is a difference when the intended effect is to increase
the robot’s height (e.g. Bucket, Bench, Basket), or that the
robot should float on water (only Basket). Our method can
handle various intended effects.

C. Constraints of the Embodiment

For a robot with a different embodiment, our method yields
objects with different properties. Table II shows the objects and
their properties as suggested by our method, for respectively a
small robot (height of 25 centimeters and 5 kilograms) and a
large robot (height of 50 centimeters and 50 kilograms). This
is to evaluate the effect of Equation 4 on Equation 5. The



method indicates that the two robots can stand on different
objects with different properties. The small robot can stand on
a Book, whereas the large robot cannot. The small robot can
stand on a Wooden Stool, whereas the large robot can only
stand on Metal and Plastic Stools. The intended action also
matters: a small object can be placed on a Glass Bench and
Paper Box, while both robots cannot stand on these objects.

D. Improving Detection of Object Properties

Given the importance of objects and their properties: how
well can a VLM detect objects with specific properties? Table
III shows the results for our VLM on the first row. The
performance is not good: mAP=0.27. Especially the Paper
Box (mAP=0.07), Wood Basket (mAP=0.12) and Plastic Stool
(mAP=0.10) are hard to detect.

Finetuning is applied with the goal to improve the perfor-
mance of estimating object properties. The subset of PACO
as shown in Table III is leveraged for this purpose. We
follow Grounding DINO’s standard recipe for finetuning, i.e.
15 epochs with the provided learning rate and schedule. With
finetuning, the results can be improved significantly, from
mAP=0.27 to mAP=0.42 on average. Paper Box is improved
from mAP=0.07 to mAP=0.46, whereas Plastic Stool is not
improved much: mAP=0.10 to mAP=0.13. Plastic Stool is a
rare object-material combination, which makes it hard to learn.
Wood Basket is improved from mAP=0.12 to mAP=0.53.

E. Generalization to Unseen Object-Properties

The question is whether the newly learned object properties
generalize to unseen objects. There is a performance gain
for the unseen objects from Table IV. On average, the VLM
performance of mAP=0.21 is increased to mAP=0.33. Some
objects do not improve much, e.g. Plastic and Metal Crate;
Wood and Glass Lamp. These are hard objects because they
are respectively partially visible (crates often are in between
other objects) and small. Paper Box, Wood Stool and Metal
Ladder are improved by large margins, without having seen
these object-material combinations during training.

F. Analysis of Results

We inspect the objects and properties for which the im-
provement is most significant. Figure 3 shows the largest
gains, sorted from most to less gain. In all cases, the VLM
as-is predicts the objects wrongly, mAP=0. The finetuned
VLM with physical properties predicts the objects and their
properties well, even in very challenging circumstances, e.g.
the Metal Ladder on the back of the firetruck photographed
under a shear viewing angle (Figure 3, right). The Wood Bench
and the Paper Box (left) are small, whereas the Plastic Box
on the motorcycle is in the midst of clutter.

Most object predictions have the correct object label, but
a wrong material label. This is to be expected: it is easier to
assess the object class than its properties. Also, the pretraining
of most VLMs is focused on object classes, not on object
properties. We inspect which object properties have improved
most, see Figure 4. The Wood Bench is corrected to a Metal

Bench (left) and vice versa (second column). Glass Basket is
corrected to Metal Basket (fourth column) and Metal Ladder
to Wood Ladder (right).

Figure 5 shows several examples of remaining errors. The
Plastic Box (left) is probably correct; it appears to be a
mislabeling in the groundtruth. The Wood Bench is mistaken
for a Metal Bench (second image) and vice versa (third image).
The prediction Wood Bench (third image) is actually a Metal
Bench, but it is hard to distinguish, even for humans. The
Metal Stool (fourth column) is a Wood Stool but it has metal
legs.

G. Searching for the Right Objects

Our method is a dialogue between an LLM and a VLM
to find the right objects with the desired properties to fulfil
an action for an intended effect. We evaluate how well our
method can find the desired combination of the object and the
property. This is to validate the joint efficacy of Equations 4,
5 and 6.

If the desired object is Paper Box, we collect distractor
images from PACO that contain Boxes with other properties
than Paper, e.g. a Plastic Box. The objective is to find the
Paper Box in the target image, in the midst of N images that
contain other Boxes. We increase N progressively to assess
how well our method can find the desired object when the task
becomes increasingly difficult. This is to mimic that the robot’s
environment increases. We repeat this trial for all images
and combinations from Table III and average the results. The
results are shown in Figure 7, with the N distractor images on
the x-axis and the rank at which the desired object is found
on the y-axis (log scale). The relation between the amount of
distractors and the rank is approximately linear, as expected.
The blue line (‘object VLM’) is the performance when only
the object class is taken into account. Evidently, this is not
an adequate strategy: the objects with the right properties are
found at ranks > 10, e.g. with 8 distractor images it is found
around rank 70 on average. Our method takes the desired
properties into account. Even with the VLM as-is (orange
line), which is not optimal for predicting object properties, the
ranking is significantly improved. With 8 distractor images, the
rank improves from 70 to <9. It can be concluded that it is
beneficial to take the object properties into account. When our
method is combined with the finetuned VLM (green line), the
average rank further decreases from 9 to 4.5. This means that
the efficiency of finding the object with the right properties is
further improved by a factor of 2 on average.

To find an object with the right property, is illustrated in
Figure 6, for three examples (rows), respectively found at
ranks 1 (optimal), 3 and 5. A Plastic Bench is found at rank 1
(top row). A Plastic Stool (middle row) is found at rank 3. At
ranks 1 and 2, other Stools are found, which are not Plastic
but Wood and Metal. A Wood Basket (bottom row) is found
at rank 5. Again, the objects are all Baskets, but not the right
property, e.g. a Plastic Basket.



Fig. 3: Improvements: After adaptation, the VLM’s prediction of objects and properties is improved (top row).

Fig. 4: Object properties: Correcting the wrong properties for several object classes.

Fig. 5: Errors: Remaining errors such as a Metal Bench was is confused with a Wooden Bench (third image) and a Metal
Stool (right) which is a Wooden Stool but it has Metal legs.



Fig. 6: Sorting: A Plastic Bench is found directly i.e. rank 1 (left), whereas the Plastic Stool is found at rank 3 (right) after
finding Stools with the wrong properties.

Fig. 7: Effectiveness: Our method with adapted VLM finds
the right objects with suitable properties much faster than the
object detection VLM and our method without adapted VLM.

H. Our Method on a Robot

Our final experiment is to equip a robot with our method.
The robot is Spot by Boston Dynamics. We task it to search
for objects to climb on, e.g. to increase its height and look
over obstacles. It is remotely controlled past 16 positions that
are a few meters apart. At each position, an image is recorded
by its omni-directional cameras. Some examples are provided
in Figure 8. Our method is applied to the collected images.
In the 16 images, there are several distractor objects such as
cables, desks, equipment, tape, etc.

Our method is searching for objects that can fulfil ‘climb
on’ (e.g. to look over some obstacle). Equations 4 is initialized
with the SPOT specifications, Equation 5 is invoked with
‘climb on’ and ‘safe’, with Grounding DINO for Equation 6.
For this task, our method has ranked the most suitable objects
and their properties. At rank 1, it finds a Wood Crate (top
left), although actually it is a composite material. At rank 2,
it suggests a Wood Bench (top right); and at rank 3 (bottom
left) it suggests a Plastic Crate. The results are not perfect, but
the suggested objects are sensible and can serve the purpose.
It shows the potential of our method in practice.

V. DISCUSSION AND CONCLUSION

We proposed a dialogue of out-of-the-box foundational
models (LLM and VLM) to find objects in the open world that
afford desired actions that contribute to a specific robot’s goal.
We ground the responses of the LLM and VLM by taking the
robot embodiment and physical object properties into account.

The results show that the framework can successfully local-
ize the relevant objects, while taking into account robot em-
bodiment and goal context. By forcing the LLM and VLM to
reason about and detect relevant object properties, the method
finds objects that are more useful to the task than a naive
approach without the dialogue. Detecting objects with relevant
properties is further improved by specifically finetuning the
VLM on e.g. materials. There is still a performance gap as
the VLM still struggles with distinguishing between subtle
object properties, especially for small objects or objects that
are often (partially) obscured. The current finetuned VLM
already improves the search for the right objects with suitable
properties.

As future work, we consider a number of ways to improve
the proposed dialogue. The VLM currently finds objects that
have a certain property, e.g. a stool that is made from wood.
However, this does not consider that objects can be composed
of different parts that have different properties. The work could
therefore be extended to allow the VLM to find objects that
have a mixture of properties (e.g. a stool made from wood
and metal), or to query the LLM if an object property is
relevant to some part of the object. Moreover, the dialogue
has as input an open-vocabulary action, in combination with
the intended effect. The dialogue can be edited to have the
action-object tuple as output instead. Then, by only giving a
textual specification of the goal, the framework could output
open-vocabulary actions on relevant objects. Lastly, the LLM
now manipulates class labels to find objects that are useful in
the queried setting. Inspired by [17], the method could become
more nuanced if considering the attributes that make an object
useful instead. Then, any object with a useful attribute can be
found, hence reducing reliance on the LLM to generate the
correct class labels.



Fig. 8: Robot: With our method, the robot finds a Wooden Crate (top left) when the intended action is ‘climb on’.
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