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Abstract—Recognizing a traffic accident is an essential part of
any autonomous driving or road monitoring system. An accident
can appear in a wide variety of forms, and understanding what
type of accident is taking place may be useful to prevent it from
reoccurring. The task of being able to classify a traffic scene as
a specific type of accident is the focus of this work. We approach
the problem by likening a traffic scene to a graph, where objects
such as cars can be represented as nodes, and relative distances
and directions between them as edges. This representation of an
accident can be referred to as a scene graph, and is used as input
for an accident classifier. Better results can be obtained with a
classifier that fuses the scene graph input with representations
from vision and language. This work introduces a multi-stage,
multimodal pipeline to pre-process videos of traffic accidents,
encode them as scene graphs, and align this representation with
vision and language modalities for accident classification. When
trained on 4 classes, our method achieves a balanced accuracy
score of 57.77% on an (unbalanced) subset of the popular
Detection of Traffic Anomaly (DoTA) benchmark, representing
an increase of close to 5 percentage points from the case where
scene graph information is not taken into account.

Index Terms—Neuro-symbolism, Vision-Language Models,
Foundation Models, Autonomous Driving, Perception

I. INTRODUCTION

The task of understanding traffic scenarios is one with ever-
increasing importance, particularly for the advancement of
Autonomous Vehicle (AV) and road infrastructure systems [Xu
et al., 2021, Yao et al., 2022, Qasemi et al., 2023, Francis
et al., 2022]. A major aspect of this task is to efficiently
and accurately recognize different types of traffic accidents,
with the ultimate goal of preventing them. We approach this
challenge by modeling traffic scenes using scene graphs. To
improve classification performance, the graph representation
is further aligned with representations from the vision and
language modalities within contrastively-trained foundation
models. Starting with video clips of traffic incidents, procured
from the Detection of Traffic Anomaly (DoTA) dataset [Yao
et al., 2022], we build Scene-Traffic-Graph Inference (STGi), a
multi-stage, multimodal pipeline to pre-process videos, encode
them as scene graphs, and align these representations with
vision and language modalities to classify traffic accidents.

In this paper, we propose Scene-Traffic-Graph Infer-
ence(STGi) as a unified system for accident classification.
First, we generate scene graphs using the roadscene2vec
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(rs2v) tool [Malawade et al., 2021]. Then, we use a scene
graph encoder (SGE) from the same authors [Malawade et al.,
2022] to obtain encodings that are aligned to encodings
of textual and visual inputs, obtained from CLIP [Radford
et al., 2021] and X-CLIP [Ni et al., 2022], respectively. X-
CLIP directly expands upon CLIP’s image encoder to include
an attention mechanism to model inter-frame communication
and to generate a new embedding representation from video
frames. In essence, scene graphs are treated as a new modality
(or ‘view’) that is aligned with text and video signals, and are
all used together to classify traffic accident scenes.

A summary of contributions is as follows:
• We introduce Scene-Traffic-Graph Inference (STGi), a

novel method for traffic accident classification which
leverages scene graphs to capture the essential features
of a traffic accident.

• We show that the added signal from a scene graph modal-
ity can enhance the performance of a video-language
traffic accident classifier by nearly 5 percentage points.

• Experiments in this work demonstrate that aligning the
scene graph modality with vision and language give
similar results to omitting alignment training, although
increasing the batch size and training time during align-
ment shows a trend of increasing scores and the potential
in further improving classification results.

II. RELATED WORK

A. Scene Graphs for Representing Traffic Scenes

Several works have taken the approach of modeling traffic
scenarios using scene graphs (SGs). Yu et al. [2020] propose
one such representation that forms the basis of the SGs pro-
duced in our work. They define a graph structure with nodes
representing entities such as vehicles and pedestrians while
edges represent relations between the objects and are labeled
by distance category (e.g., visible, very near) and orientation
(e.g., in front of, beside). Zipfl and Zöllner [2021] also model
these objects in a traffic scene, further accounting for relative
speeds of objects in the graph edges. Guo et al. [2023] extracts
similar semantic information from a traffic scene, but the
focus is on generating a knowledge graph, accounting for
added traffic information present in a scene such as road signs
and lanes. Qasemi et al. [2023] also use a knowledge graph
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Fig. 1: An overview of the STGi Architecture. Beginning with video and text inputs, video frames are sampled and used to
generate scene graphs. Then, alignment training is performed on the three encoders before a prediction head is used to classify
the accident.

to enhance a video-language model for the related task of
Question Answering in the domain of traffic accidents. Their
method is to inject domain-specific knowledge by first auto-
generating video annotations and storing semantic information
about a traffic scene in a knowledge graph. The use of a
knowledge graph in this case is helpful in contextualizing the
traffic scene in a broader traffic monitoring ontology and for
answering general traffic accident-related questions, such as
the impact of having more vehicles in a traffic scene, but is less
effective in identifying accident types based on the interactions
among vehicles in a specific traffic scene. Instead, our method
is better suited for the task of accident classification by
leveraging scene graphs to capture relationships among objects
that may be involved in a traffic accident in a given video
example. Combining the use of scene graphs with knowledge
graphs to model traffic settings, Dimasi [2023] makes use of
a knowledge graph to boost the performance of the RelTR
(Relation Transformer) model [Cong et al., 2022], an encoder-
decoder model used for scene graph generation by framing it
as a set prediction problem.

B. Leveraging Scene Graphs with Neural Networks

There are many possible designs and applications for lever-
aging the versatile structure of scene graphs to enhance the
performance of neural networks [Li et al., 2019, Khademi
and Schulte, 2020, Rana et al., 2023]. More generally, Zhang
et al. [2019] describe the ability of scene graphs to enhance
Visual Question Answering (VQA) systems as an alternative
to solely focusing on vision and language features. Although
their study is not specific to our traffic domain, they claim that
scene graphs derived from images can capture the essential
visual features and may outperform images for VQA tasks.
Many works have focused on automatically generating scene
graphs that can easily be encoded into neural networks for
various downstream tasks. The rs2v tool [Malawade et al.,

2021] generates scene graphs for individual frames of traffic
videos and is applied to our work. Alternatively, Nag et al.
[2023] design a tool specifically for modeling videos with
scene graphs which accounts for spatial and temporal rela-
tionships between frames based on sequence modeling with
transformers. However, they train on the Action Genome [Ji
et al., 2019] dataset and produce graphs that are unrelated to
traffic scenarios, making this tool less applicable to our work.

C. Multimodal Alignment with Contrastive Representations

Radford et al. [2021] proposed a model that uses a con-
trastive training strategy to align text captions with images for
the Contrastive Language–Image Pre-training (CLIP) model.
From this, several works have focused on aligning encoders
of additional modalities to those trained for CLIP, such as
aligning audio [Wu et al., 2022] and haptic data [Tatiya
et al., 2024]. Similar to our implementation, Koch et al.
[2023] use CLIP’s text encoder to contrastively train 3D scene
graphs. The work by Huang et al. [2023] aims to enhance
CLIP’s performance by injecting scene graph information
into the embedding generated by CLIP’s text encoder before
contrastive learning is performed between the image and text
embedding spaces. To the best of our knowledge, however, our
work is the first to treat scene graphs as an additional modality
that is grounded to a text and video encoder. There are also
many possible strategies for fusing the outputs of a multimodal
model before the downstream task at hand, such as early and
late stage fusion involving concatenation [Sleeman et al., 2022,
Pawłowski et al., 2023], merging [Sleeman et al., 2022], or
sampling from a shared embedding space [Gao et al., 2020].
We experiment with several of these late fusion techniques on
the three modality embeddings after training for alignment.

III. METHODOLOGY

To approach the problem of traffic accident classification,
a multi-stage pipeline was developed. The pipeline, which is



represented in Figure 1, can be summarized in four stages and
is described in the following sections:

1) Data pre-processing: Sample video frames, generate
captions, and use a scene graph generator to produce
a set of scene graphs for each traffic accident example.

2) Scene graph encoder pre-training: Pre-train the scene
graph encoder on the classification task.

3) Multimodal alignment: Align the scene graph encoder
with frozen video and text encoders.

4) Fine tuning for downstream task: Train a classification
head on top of the aligned multimodal model.

A. Data Pre-processing

In the first stage, for extensibility and ease, we leverage and
tune existing tools for generating traffic scene graphs that will
later be fed into our modeling approach. Various scene graph
generators (SGGs) are available for this, although not many
fit our specific requirements for a generator that is capable of
identifying and encoding features unique to traffic accidents,
such as different types of vehicle collisions. Some do work
for our needs — in particular, the roadscene2vec (rs2v)
tool created by Malawade et al. [2021] which we leverage
for generating scene graphs from traffic video frames. To use
rs2v, we first sample a fixed amount of frames from each
video, and text captions are generated manually for each class.
Then, feeding in a series of frames from a traffic scene,
the rs2v generator uses an object detector and keeps only
the relevant entities relating to traffic (such as road, cars,
pedestrians, etc.), filtering out other detected objects. Next,
after generating a “bird’s eye view” (BEV) projection of the
image and approximating the relative location of each object
in this projection, edges are connected between nearby entities
in the scene, and vehicles are mapped to lanes. This forms the
scene graph for a specific frame from a video sample. The
SGG is an important component of this pipeline as it defines
the elements in the scene graph modality.

An important step before employing this tool is to calibrate
the BEV and adjust the proximity thresholds (which are used
to create edges of varying attributes, such as very near or
visible, relating a pair of objects). The authors specifically note
the challenges they faced when adjusting these settings with
regard to the DoTA dataset, and mention that for best results,
they needed to calibrate their model for each traffic scene
[Malawade et al., 2022]. In our case, we iteratively sample and
adjust the BEV parameters and proximity thresholds based on
the output quality of the SGs produced for various scenes in
DoTA. We do this to select one configuration to generate the
SGs for our task, although it remains an inherent challenge to
generalize the parameter settings for the entire dataset. Some
examples of the generated SGs can be seen in Appendix A.

For text, we manually compose captions describing each
of the four accident classes (see Appendix B), pairing each
caption with videos from its respective class to form the
training examples. We also experiment with two sets of
captions, however, we focus the scope of this work primarily
on the scene graph generation process from video frames

rather than caption generation. It should be noted that although
these captions are used during training for aligning the SGE,
they are not used during inference on the final model because
they are not from our dataset and provide a one-to-one
mapping directly to the accident classes. Through fine-tuning
the classification head using these captions, the model can
achieve 100% accuracy this way. Instead, we fine-tune and
test the classification head using the same caption as noted in
Appendix B for all examples.

B. Scene Graph Encoder

In stage two, the SGE encodes scene graphs to fixed-length
embeddings. To do this, a multirelational graph convolutional
network (MRGCN) as employed by Malawade et al. [2022]
is used, which includes an attention mechanism along with
LSTMs to model the spatial and temporal relations of the scene
graphs generated for a given video. The SGE may be pre-
trained for the classification task before aligning the scene
graphs with the language and vision modalities.

C. Multimodal Alignment

For stage three, we use the CLIP model [Radford et al.,
2021], but replace the CLIP image encoder with X-CLIP [Ni
et al., 2022], a pre-trained video encoder, to accept videos
rather than images. We leave CLIP’s text encoder in place. We
then freeze the weights from the video and text encoders and
align them to the SGE encoder, which takes the new “scene
graph modality” as input.

D. Fine Tuning for Downstream Task

The final stage involves training a classification head that
accepts embeddings from the three modalities and outputs an
accident class for a traffic scene. This requires the selection of
a method to fuse the signal from the three modalities followed
by training a small network. For this, we experiment with
different late fusion techniques such as taking a weighted
linear combination of the modality outputs [Kaliciak et al.,
2014] and training various MLP classifiers [Kiela et al., 2018]
with and without activations on top of the concatenated em-
beddings. Based on these experiments, we choose the approach
of concatenating the vectors from the three modalities as
described by Sleeman et al. [2022] and, following Wu et al.
[2022], train a 2-layer MLP with ReLU activations as our
classification head.

IV. EXPERIMENTAL DESIGN

A. Dataset

Given the nature of our multimodal approach, we require
data in the form of videos, text, and scene graphs. Regard-
ing the videos, we focus on using the Detection of Traffic
Anomaly (DoTA) dataset [Yao et al., 2022] for this task.
DoTA is a dataset consisting of 4,677 curated videos of traffic
anomalies from YouTube, and was specifically designed to
answer the following three questions about each video: (1)
When does the anomalous event (i.e., accident) start and end;
(2) Where are the anomalous regions of each video frame; and



(3) What type of anomaly is taking place. For our use case of
this dataset, question one is irrelevant since we only sample
frames from the anomalous portion of the video based on the
annotations of the DoTA authors. Additionally, question two
is less essential for us since we use a SGG, which is meant
to extract the necessary objects from video frames and model
their relevant spatial relationships for our task. We therefore
prioritize providing an answer for the third question, that is,
classifying different traffic anomalies. However, given the mul-
titude of classes and the inherent challenge in distinguishing
them even with the naked eye, we limit the problem to only
a subset of four of the available classes.

In addition to the provided video classes, Yao et al. [2022]
also divides the videos into two types, ego (where the vehicle
from which the video recording is captured is involved in
the accident), and its opposite, non-ego. Every video class
contains videos of both types. By default, rs2v is designed
to only model relationships between the ego vehicle and other
objects, not among other objects themselves, so we further
restrict our task to the set of ego videos available in DoTA.
In total, this leaves us with 4 classes and 2,163 videos. The
classes are labeled as follows, describing the type movement of
the vehicle as the accident occurs: moving ahead or waiting,
oncoming, turning, and lateral.

B. Baselines and Metrics

In order to evaluate the usefulness of representing traffic
scenes graphically to classify them, we first verify whether
a SGE alone is superior to randomly guessing an accident
class. We later evaluate the effectiveness of using SGs in
a multimodal classifier by comparing the difference in the
performance between using just text and video embeddings
versus adding in the signal from the SG modality.

For this and other results, the primary metrics we focus
on are accuracy and balanced accuracy. Accuracy is simply
defined as the proportion of the correctly classified predic-
tions out of the total number of predictions and remains an
interpretable metric that is relatively simple to compare across
different benchmarks. There is, however, significant imbalance
in the dataset, with the turning class appearing over twice as
frequently as the remaining three. Since we want to evenly
prioritize classifying each type of accident, we turn to balanced
accuracy, which is computed as the (unweighted) average
recall over all classes, as a more reliable metric for our use
case.

C. Modality Alignment, Pre-training and Hyperparameters

The core TG model consists of three encoders for three
different modalities: text, vision, and graph. For our classi-
fication task, a MLP classifier head is placed at the end of
the model to output scores for each of the four classes. The
text and vision encoders are both kept frozen throughout all of
our experiments as we train the SGE to align its embedding
space with those of text and vision using Symmetric Cross
Entropy Loss [Wang et al., 2019]. To evaluate the effective-
ness of this training regiment, we analyze the classification

performance with and without training for modality alignment.
We also experiment with the effect of pre-training the SGE
before conducting the alignment training. As an additional
pre-training baseline, we use a pre-trained model provided
by Malawade et al. [2022], which was trained on a synthetic
traffic dataset generated using the CARLA traffic simulator
[Dosovitskiy et al., 2017]. Finally, we perform tests to evaluate
the performance of different hyperparameter settings (batch
size, training time) for the alignment training.

D. Implementation Details

We train the SGE for 200 epochs on the default hyperpa-
rameter settings as specified by Yu et al. [2020]. For the SGE
pre-training experiments, we select the SGE with the lowest
validation loss. We also experiment with the provided SGE
pre-trained checkpoint that was trained on synthetic traffic
scenes generated by CARLA. For the modality alignment
training, we keep most of the default hyperparameter settings,
varying batch size (32 to 128) and the number of epochs (8
to 20).

V. RESULTS AND DISCUSSION

A. SGE Pre-training Results

As seen in Table I, pre-training the SGE on the DoTA
dataset allows it to perform the classification task approxi-
mately 13 percentage points better than random classification,
which would have an expected accuracy of 25%. This suggests
that the spatial and temporal information encoded in the graph
embeddings produced by the SGE contain useful information
towards accident classification. Unsurprisingly, the model pre-
trained on the synthetic CARLA dataset does not achieve as
strong performance on our task as the model trained on DoTA.
This is understandable, given that the former was trained to
classify whether or not a traffic maneuver is deemed to be risky
[Malawade et al., 2022] rather than to classify traffic accidents.
Furthermore, the synthetic traffic scenes in the CARLA dataset
used by the authors do not vary as much as those seen in
DoTA, and do not contain examples from the four classes used
for our task. However, by further training the CARLA model
on the DoTA dataset, we are able to achieve similar results
to training on DoTA alone (compare two rightmost columns
of Table I). For the remaining experiments in the paper, when
unspecified, we use the SGE pre-trained only on the DoTA
dataset.

TABLE I: SGE Performance with varying pre-train data.
Class-balanced accuracy scores are indicated with a (b).

Pre-training Data CARLA DoTA CARLA+DoTA

Accuracy

Train - 62.72 64.09
Train (b) - 64.78 61.42
Validation - 42.49 41.91
Validation (b) - 40.79 41.42
Test 17.32 37.88 36.03
Test (b) 26.33 38.05 37.81



TABLE II: Test Accuracy Comparison between three system settings. In the first setting, the SGE is not used and the inputs
to the system are only from the video and text modalities (the SGG and SGE are unused and stage III-C from the pipeline
is skipped). In the second, the SGE is used and aligned with the vision and text encoders before running classification (full
architecture is used, but SGE pre-training done in stage III-B may be skipped). In the third, the SGE is used but not aligned
with the other encoders (stage III-C is skipped).

Train Setting No SGE SGE with Alignment SGE without Alignment

Pre-training data None None§ CARLA DoTA∗ DoTA

Test accuracy 57.04 54.97 52.66 58.66 57.97
Test accuracy (b) 53.22 53.53 53.97 56.97 57.74
Column label 1 2 3 4 5

B. SGE with Alignment Results

The primary classification results after training for align-
ment can be seen in Table II. In Column 1, we verify the
baseline accuracy of the model when the scene graph modality
is not used at all. Looking at the balanced accuracy score, it
is interesting to note that the performance under this setting
is only slightly under that of the aligned model when no pre-
training data is used or if only the CARLA dataset is used
(Columns 2, 3). However, pre-training the model on the DoTA
dataset (Column 4) shows a further boost in performance by
about 3%. This boost suggests that the SG embeddings may be
encoding some information about the traffic scenes that cannot
be fully captured by either the language or vision modalities.

1) Pre-trained SGE with Alignment: Regarding the case
when the model is pre-trained on the DoTA dataset, the model
actually has a slightly better performance without undergoing
the alignment training (Column 5) versus with alignment
(Column 4). This seems to suggest that the model is not
learning further useful information during alignment training.
One possible explanation for this is that the data domains of
the frozen encoders are not similar enough to DoTA for any
positive transfer of data domain knowledge to occur [Zhang
et al., 2023]. Another possibility has to do with the align-
ment training procedure, which is based on CLIP’s training
algorithm and relies heavily on using a large batch size at
each step [Radford et al., 2021]. This is because the algorithm
performs contrastive training on each of the three pairs of
embedding spaces (vision-graph, text-graph, and vision-text)
for each batch of traffic accident examples. However, given
the limited size of the DoTA dataset and compute constraints,
our experiments in Table II use a batch size of 32 and are
limited to 10 epochs of training. With a larger batch size
(and possibly increasing the number of training epochs), it
is possible that the hypothesized trend of higher accuracy
when training for alignment would be present. To this end,
we show some additional results in Table III, which indicate
that both increasing batch size and the number of epochs give
similar results to the “SGE without Alignment” case shown in
Table II (Column 5) rather than worse results (Columns 2-4 of
Table II). It is possible that further training of the larger batch
sizes would have improved these results beyond the values in
Column 5.

TABLE III: Pre-training on DoTA with different configura-
tions. “e” is number of epochs, “bs” is batch size. Column 4
in Table II is the same as Column 1 in this table.

Pre-training on DoTA & SGE with Alignment

10e, bs32∗ 20e, bs32 20e, bs64 10e, bs128

Test accuracy 58.66 58.2 57.51 60.51
Test accuracy (b) 56.97 57.77 57.53 57.72
Column label 1 2 3 4

2) No Pre-trained SGE with Alignment: Another surprising
point that arises from the results presented in Table II is that
there is very little improvement when training the SGE for
alignment from scratch (Column 2) over the baseline “No
SGE” case (Column 1). Similar to the case where we pre-
trained on DoTA, it is once again possible that further increas-
ing the batch size could be the solution. This is suggested by
the results in Table IV, where larger batch sizes begin to show
a significant increase in performance over the baseline.

TABLE IV: Training for alignment from scratch with different
configurations. Column 2 in Table II is the same as Column
1 in this table.

No Pre-training & SGE with Alignment

10e, bs32§ 10e, bs64 10e, bs128

Test accuracy 54.97 57.51 59.35
Test accuracy (b) 53.53 53.94 56.00
Column label 1 2 3

VI. CONCLUSION AND FUTURE WORK

In this work, we have shown that encoding traffic informa-
tion in the form of a scene graph is beneficial towards the
goal of accident classification. This is made clear by the pre-
training encoder results which show the SGE’s ability to beat a
random classifier at this task. It was further illustrated that the
scene graph information can serve to enhance the performance
of a vision-language classifier by fusing information from all
three modalities. Finally, although we were not able to show
an improved score for the classifier after alignment, it should
be noted that alignment does not have a negative effect on
performance, and we demonstrate that further training and
fine-tuning may improve the score beyond the unaligned case.



There are several areas where future work can be done
in this task. Firstly, although three modalities are used, little
exploration has been conducted on the language modality. In
principle, captions for each video should be derived from
the video itself, as the SGs are. This would allow for the
captions to be fed into the model to fine-tune the classifier
head and run inference with a greater signal coming from the
language modality. Next, although they provide some benefit
for the model, the generated SGs have a relatively limited
structure: only categorical distance relations between a vehicle
and objects in its surroundings are generated, along with
mappings to a fixed set of three traffic lanes (left, middle,
and right). Enabling a semantic extension of the generated
SGs may enhance the signal obtained from this modality.
Similarly, by modeling relations between all objects in the
scene, this pipeline can be expanded for the non-ego case as
well, and perhaps can be used on more classes in the DoTA
dataset or similar use cases. Additionally, the MRGCN-based
architecture of the SGE was taken directly from Yu et al.
[2020], but perhaps it can be further improved by modifying
either its spatial or temporal modeling components. This
work has demonstrated that further fine-tuning and alignment
training shows promise to improve results. Experiments with
different modality fusion methods as well as classification
heads may also lead to improvements.
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scene description: The semantic scene graph. CoRR,
abs/2111.10196, 2021. URL https://arxiv.org/abs/2111.
10196.

APPENDIX

APPENDIX A
GENERATED SCENE GRAPH EXAMPLE

Fig. 2: A scene graph generated using the rs2v [Malawade
et al., 2021] tool. Starting from a video frame (Raw Image), the
SGG first detects objects in the scene (Object Detection Image)
and generates the BEV (Bird’s Eye Image) before creating the
scene graph representation (SceneGraph Image). This scene
graph shows the ego car relative to two other vehicles, one
categorized as in the left lane, the other right. The closer
vehicle is recognized as being near collision (with the edge
attribute “near coll”), whereas the farther vehicle is registered
in the scene graph as simply being “visible”.

APPENDIX B
CAPTIONS

TABLE V: Two sets of captions that were experimented
with for training during alignment. All results shown in this
report used Style B. For fine-tuning the classification head,
all examples were trained with the same generic caption, “An
accident as a result of a vehicle doing something.”

Accident Class Caption Style A Caption Style B
Moving Ahead or
Waiting

The vehicle is moving
ahead or waiting in the
accident.

An accident as a result
of a vehicle moving into
another vehicle.

Oncoming The vehicle is hitting an
oncoming vehicle in the
accident.

An accident as a result
of a vehicle hitting an
oncoming vehicle.

Turning The vehicle is turning in
the accident.

An accident as a result of
a vehicle turning.

Lateral The vehicle is moving
laterally in the accident.

An accident as a result
of a vehicle moving lat-
erally.
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