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Abstract—With the recent rise of Large Language Models
(LLMs), Vision-Language Models (VLMs), and other general
foundation models, there is growing potential for multimodal,
multi-task embodied agents that can operate in diverse en-
vironments given only natural language as input. One such
application area is indoor navigation using natural language
instructions. However, despite recent progress, this problem
remains challenging due to the spatial reasoning and semantic
understanding required, particularly in arbitrary scenes that may
contain many objects belonging to fine-grained classes. To address
this challenge, we curate the largest real-world dataset for Vision
and Language-guided Action in 3D Scenes (VLA-3D), consisting
of over 11.5K scanned 3D indoor rooms from existing datasets,
23.5M heuristically generated semantic relations between objects,
and 9.7M synthetically generated referential statements. Our
dataset consists of processed 3D point clouds, semantic object and
room annotations, scene graphs, navigable free space annotations,
and referential language statements that specifically focus on
view-independent spatial relations for disambiguating objects.
The goal of these features is to specifically aid the downstream
task of navigation, especially on real-world systems where some
level of robustness must be guaranteed in an open world of
changing scenes and imperfect language. We also aim for this
dataset to aid the development of interactive agents that can both
respond to commands and ask and answer questions regarding
a scene. We benchmark our dataset with current state-of-the-art
models to obtain a performance baseline. All code to generate and
visualize the dataset is publicly released 1. With the release of this
dataset, we hope to provide a resource for progress in semantic
3D scene understanding that is robust to changes and one which
will aid the development of interactive indoor navigation systems.

I. INTRODUCTION

Methods combining vision and language have been evolving
rapidly with the advent of both Large Language Models
(LLMs) [1, 29, 28] and Vision-Language Models (VLMs)
[24, 26, 23] pre-trained on significant amounts of data, tackling
various 2D tasks such as Visual Question Answering (VQA)
[4], image retrieval [20], and image captioning [24]. As we
progress towards generalizable embodied intelligence, there
is a need for methods that are capable of reasoning in 3D-
space and interacting with humans. Using natural language for
example, humans are able to refer to objects in a 3D scene in
a way that disambiguates the target object, often using the
utterance of “least effort” [33] and making use of relative
spatial relationships. An agent that can similarly solve such a
problem would be particularly valuable in robotics fields such
as indoor-navigation with applications as in-home assistants.

1https://github.com/HaochenZ11/VLA-3D

The pursuit of such agents that can identify and understand
3D scenes, consolidate visual input with language semantics,
and display robust performance for real-world deployment,
however, presents various challenges. First, the scene can
have hundreds of objects, contain objects belonging to fine-
grained classes, and have many similar objects [25]. Second,
human referential language often involves spatial reasoning,
affordances, open-vocabulary language, and may even be
incorrect or refer to something that does not exist, e.g. “the
remote on the table” when the remote is actually on the sofa.
Third, the scale of available vision-language data in the 3D
space pales in comparison to the amount of 2D data, which
was crucial to the success of 2D vision-language learning
methods [21, 8]. Despite impressive recent advancements
with foundation models, such problems remain difficult when
applied to robotics as current methods fail to offer the accuracy
and robustness needed for real-world deployment [14].

To this end, we propose a novel dataset based on 3D scenes
from a diverse set of existing scans of indoor environments
that provides a unique resource for training referential object
grounding methods. Building on top of the scans, we provide
1) point clouds as they enable learning directly from 3D
geometric and visual information [5], 2) extracted object-
level attributes and semantic class labels for discriminating
and categorizing objects, 3) large-scale scene graphs with
spatial relations for a structured representation of a scene,
4) referential language statements to support vision-language
grounding using natural language, and 5) traversable free space
annotations to explicitly connect to downstream navigation
tasks. The inclusion of dense scene graphs and traversable
free space are two features that particularly distinguish our
dataset from previous object-referential datasets. The scene
graphs allow for a robust representation for the semantics in
each scene that can be used to guide the grounding task and
also to infer when the language statement is invalid. Free space
annotations give the ability to generate referential statements
that refer not just to objects but to spaces or paths.

Along with our dataset, we also release the code for the
entire dataset generation process, demonstrating that synthetic
heuristic-based generation methods can aid the efficient gener-
ation of large-scale datasets. A custom dataset visualizer tool
is also provided to visualize individual scenes and regions
from our dataset. With our dataset, we test two state-of-the-
art (SOTA) referential object grounding baseline models on
our data to verify that such low-level semantic understanding



Fig. 1. Sample region from the dataset visualized with (a) a scene graph (a)
and (b) a corresponding referential statement.

remains a challenging problem and provide a starting point
to the identification of where SOTA methods may fail. This
can then aid the subsequent development of higher-fidelity 3D
vision-language methods that reason over real-world scenes.
A sample from our dataset is shown in Figure 1.

II. RELATED WORK

Object Referential Datasets

The referential object-grounding task has been defined and
explored in datasets such as CLEVR [19] in the 2D space and
ReferIt3D [2], ScanRefer [9], SceneVerse [17] in the 3D space.
While these datasets are similar in the style of their referential
statements, the statements are often unintuitive and unnatural
compared to human referential statements. E.g, using clock
bearings to describe spatial location or using many redundant
or subjective descriptors such as “comfy” [2]. Both ReferIt3D
and ScanRefer are also of a smaller scale and focus only on
a single scene data source in which all scenes are single-
room, making them less suitable for downstream navigation
tasks. SceneVerse scales the data up by curating a much
larger dataset and generating statements synthetically, then
using an LLM for rephrasing. Despite the increase in scale,
the LLM-rephrased statements are often unnatural (e.g. “the
chair stands proudly against the wall”), and the templates
lack explicit references to attributes like size, color, and shape
which humans often use for object reference. As a result,
models trained on SceneVerse still performed poorly on the
Nr3D benchmark [17].

Semantic Scene Graph Datasets

Generating scene graphs from 3D scenes has also been
explored in 3DSSG [30], Hydra [15], HOV-SG [31], and
ConceptGraphs [12]. 3DSSG focuses on predicting scene
graphs automatically, resulting in generated graphs that can
miss relations or generate redundant ones. The main use case is
scene retrieval from a set of scenes which is different from the

navigation paradigm where relations must help disambiguate
objects or locations within a single scene. In Hydra, a system
is developed to build 3D scene graphs in real-time but does
not include explicit language-grounding. While HOV-SG and
ConceptGraphs both build open-vocabulary scene graphs, the
language-guided navigation task they’re designed for involves
referring to an object mainly using region references rather
than fine-grained inter-object relations.

Instruction-Following Datasets

Multiple works have also explored language-guided navi-
gation through instruction-following statements, often speci-
fying a series of steps to move between regions in a large
scene. Common datasets include Room Across Room [22]
and Room-2-Room [3]. While these datasets involve spatial
and directional references, the task is different from ours as
it focuses on a series of distinct steps between rooms rather
than explicit fine-grained inter-object spatial relations. The
instruction-following task not only requires knowledge of what
objects are present, but also exactly where objects and rooms
are relative to each other in a multi-room scene, making it
difficult to be robust to scene changes or imperfect language.

Referential Object Grounding

A number of papers have explored the task of learning
referential object grounding, mainly on either the ReferIt3D
benchmark or the ScanRefer task. These include BUTD-DETR
[16], MVT [14], ViL3DRel [9], 3D-VisTA [32], and GPS
trained on SceneVerse [17]. The best performing method, GPS,
however, still only achieves an accuracy of 64.9% on natural
language statements [17], which is far below the acceptable
threshold for real-world deployment. All of these models are
also based on a similar transformer architecture, and with
the exception of GPS, cannot handle open-vocabulary object
names, which is unideal for a real-world use case. These
models’ ability to only choose the most likely object from
a list also makes them incapable of handling situations where
the language input has mistakes or is only partially valid.

III. VLA-3D DATASET

A. Overview

To aid the development of robust and interactive indoor
navigation agents, we introduce a synthetically-generated, pub-
licly released dataset for Vision and Language-guided Action
in 3D Scenes (VLA-3D). Our dataset is based on 3D scans
from five real-world datasets: ScanNet [10], Matterport3D
[7], Habitat-Matterport 3D (HM3D) [25], 3RScan [18], and
ARKitScenes [6], as well as scenes generated in Unity. Figure
2 shows a breakdown of the number of regions from each data
source. For each scene, we provide:

• Scene point cloud
• List of objects with semantic class labels, bounding box,

and color(s)
• List of traversable free spaces
• List of regions with semantic labels and bounding boxes
• Scene graph of spatial relations split by room



Fig. 2. Breakdown of regions from each data source

Fig. 3. Total number of objects in each dataset processed

• Language statements with ground-truth annotation
Two key features of our dataset are providing large-scale scene
graphs for each scene that are robust to scene changes and
enables identification of similar objects, as well as incorporat-
ing traversable free space as referential targets in addition to
just objects. In total, our dataset contains 7635 scenes which
contain over 11.5k regions, defined as separate rooms in a
scene. A total of over 286k objects from 477 unique classes
exist in the dataset, along with 23.5M inter-object spatial
relations and 9.7M referential statements. Figure 3 shows the
total number of objects in each dataset source while Figure
4 shows the number of each spatial relation generated per
dataset.

The data curation process is further detailed below and an
overview is shown in 5.

B. 3D Scan Processing

To generate point cloud files, scene-level point clouds were
obtained from the vertices defined in the original PLY files for
ScanNet, Matterport3D, and ARKitScenes. For HM3D, Unity,
and 3RScan scenes, point clouds were sampled uniformly
from the original mesh files while colors were sampled from
the textures. Regions and objects were identified leveraging
the semantic information in the original meshes. ScanNet,
3RScan, and ARKitScenes each have a single room per scene
while region segmentations are provided in Matterport-3D and
HM3D, and custom-segmented for Unity scenes. For each

Fig. 4. Total number of each relation type from each dataset processed

TABLE I
SUMMARY OF SEMANTIC RELATIONSHIP TYPES IN VLA-3D

Relation Definition Synonyms Properties
Above Target is above the anchor Over
Below Target is below the anchor Under, Beneath, Un-

derneath
Closest Target is the closest object of

a certain class to the anchor
Nearest Inter-class

Farthest Target is the farthest object
from a certain class to the an-
chor

Most distant, Farthest
away

Inter-class

Between Target is between two anchors In the middle of, In-
between

Ternary

Near Target is within a threshold
distance of the anchor

Next to, Close to, Ad-
jacent to, Beside

Symmetric

In Target is inside the anchor Inside, Within
On Target is above and in contact

with the anchor in the Z-axis
On top of

object labeled in the scenes, an open-vocabulary class name is
stored and the semantic class is mapped to both the NYU40
[13] and NYUv2 [27] schemas with the provided mappings for
flexibility 2. The dominant three colors (if any) were obtained
for each object based on the object point cloud and a color
clustering algorithm.

To provide extra navigation targets, each scan was also
processed to generate the horizontally traversable free space.
Separate traversable regions in a room are chunked into sub-
regions, for which spatial relations with other objects in the
scene are generated to create unambiguous references to these
spaces (e.g. “the space near the table”).

C. Scene Graph Generation

Eight different types of semantic spatial relations were
calculated using heuristics based on the yawed object bound-
ing boxes to generate a scene graph of relations. Relations
are generated exhaustively for every pair or triple of objects
within a region, then filtered afterwards depending on the
semantic classes involved. All relations are binary except for
the “between” relation, which is ternary.

Table I defines the types of spatial relations used.

2For the Unity scenes, the ground-truth semantic labels were cleaned then
manually mapped to the class schemas by five data annotators. A validation
round was done to standardize the labels.



Fig. 5. Data processing pipeline consisting of: 3D Scan Processing, Scene Graph Generation, and Language Generation

TABLE II
REFERENTIAL OBJECT GROUNDING ACCURACY OF TWO BASELINE

MODELS ON VLA-3D, NR3D, AND SR3D

Baseline Model VLA-3D Nr3D Sr3D
MVT 22.5% 59.5% 64.5%

3D-VisTA 28.9% 64.2% 76.4%

D. Language Generation

Referential language statements were synthetically gener-
ated based on the computed scene graph using a template-
based generation method. From the table above, synonyms
for each relation are used to add variety into the statements.
Every statement has at least one semantic relation and only
uses object attributes if needed to distinguish the target object.
The generated statements are also:

1) View-independent: The relation predicate for the target
object does not depend on the perspective from which
the scene is viewed from.

2) Unambiguous: Only one possibility exists in the region
for the referred target object.

3) Minimal: Following Grice’s maxim of manner [11],
statements use the least possible descriptors to disam-
biguate the target object.

IV. BASELINE EVALUATION

To verify the difficulty of our dataset, we evaluate the
pre-trained checkpoints of two SOTA open-source baseline
models on our data directly: MVT and 3D-VisTA. MVT is the
best-performing method on the official ReferIt3D benchmark
while 3D-VisTA is a more recent method that has since
outperformed MVT. The test results are shown in Table II. The
test performances on both Nr3D and Sr3D (which the models
are trained on) are also shown as a point of comparison.

The results of both models are much lower on our dataset
compared to their performance on the ReferIt3D benchmark,
likely due to the fact that they are directly evaluated not just
on new language data but also on unseen scenes with many
more fine-grained objects than what they were trained on.

Upon examining failure cases, we observe that failures are
either due to object classification errors, language semantic
reasoning errors (e.g. mixing up target and anchor object), or
errors in spatial reasoning (e.g. choosing “distractor objects”
of the same semantic class but incorrect spatial relation). This
disconnect in performance indicates the poor cross-domain
generalizability of existing methods, especially to complex
real-world scenes, and delineates the need for more diverse
language data to improve 3D visual grounding models and
enable their use in more complex tasks like interactive indoor
navigation. It also verifies VLA-3D as a challenging bench-
mark for progress towards this goal.

V. CONCLUSION

Aiming to advance progress in semantic scene reasoning
and understanding in robotics applications, we introduce a
large-scale novel dataset of object-referential natural language
statements along with spatial scene graphs for a diverse
set of 3D scenes. This dataset contains a variety of spatial
relationships and language statements on the scale of millions
and is suited for the sub-task of referential object grounding
guided by structured scene representations. Future extensions
to VLA-3D include augmenting the statements with LLMs,
adding 3D scan data from other real-world sources, generating
compound relational statements, generating view-dependent
statements, and extending the statements beyond referential
object-grounding to include the action component explicitly.
Further research using this dataset for training could involve
the development of generalizable system-integrated modules
with the capabilities of answering questions about the scene,
identifying items not in the scene, and suggesting alternative
objects with similar attributes, location, or affordances. Over-
all, our dataset establishes a resource for the development
of generalizable methods that extract observations from 3D
scenes and reason about them using open-vocabulary natural
language, which aids the development of interactive indoor
navigation agents that can operate in changing environments,
both alongside and with humans.
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Abhinav Valada, and Wolfram Burgard. Hierarchical
open-vocabulary 3d scene graphs for language-grounded
robot navigation. In First Workshop on Vision-Language
Models for Navigation and Manipulation at ICRA 2024,
2024.

[32] Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng,
Siyuan Huang, and Qing Li. 3d-vista: Pre-trained trans-
former for 3d vision and text alignment. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 2911–2921, 2023.

[33] George Kingsley Zipf. Human behavior and the prin-
ciple of least effort: An introduction to human ecology.
Ravenio Books, 2016.


	Introduction
	Related Work
	VLA-3D Dataset
	Overview
	3D Scan Processing
	Scene Graph Generation
	Language Generation

	Baseline Evaluation
	Conclusion

