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Execution

EnvironmentsFig. 1: This paper presents a system for opening cabinets and drawers in novel real world environments using a commodity mobile manipulator. Here we
visualize an example execution of our system interacting with a novel object in an unseen environment. We include the following frames: before navigation,
after navigation, pre-grasp pose, during manipulation, and at the end of manipulation. We evaluate our system across 13 unseen environments from 10 distinct
buildings for a total of 31 unique articulated objects in the real world.

Abstract—Pulling open cabinets and drawers presents many
difficult technical challenges in perception (inferring articulation
parameters for objects from onboard sensors), planning (pro-
ducing motion plans that conform to tight task constraints), and
control (making and maintaining contact while applying forces
on the environment). In this work, we build an end-to-end system
that enables a commodity mobile manipulator (Stretch RE2) to
pull open cabinets and drawers in diverse previously unseen real
world environments. We conduct 4 days of real world testing
of this system spanning 31 different objects from across 13
different real world environments. Our system achieves a success
rate of 61% on opening novel cabinets and drawers in unseen
environments zero-shot. An analysis of the failure modes suggests
that errors in perception are the most significant challenge for
our system. We will open source code and models for others to
replicate and build upon our system.

I. INTRODUCTION

This paper develops and evaluates a system for pulling
open cabinets and drawers in diverse previously unseen real
world environments (Figure 1). Opening articulated objects
like cabinets and drawers presents hard technical challenges
spanning perception, planning, and last centimeter control.
These include accurate perception of object handles that are
typically small and shiny, whole-body planning to drive the
end-effector along the task constraint (i.e. trajectory dictated
by the articulating handle), and dealing with execution errors
in a task with low tolerances. All of these pieces have been
studied at length in isolation [1, 5, 6]. Yet, how these modules
interact with one another and what matters for successfully
completing the task are not well understood. End-to-end learn-
ing via imitation or reinforcement circumvents these issues but
is itself difficult because of the sample efficiency of learning
and the unavailability of large-scale datasets for learning [2].

We take a modular approach and bring to bear state-of-the-art
modules for perception and planning with a specific focus on
studying how the different modules play with one another.

Specifically, for perception we extend a Mask RCNN
model [3] to also output articulation parameters. For planning,
we extend SeqIK, the recently proposed trajectory optimiza-
tion framework [2] to produce whole body motion plans.
Contrary to our expectation, just putting these two modules
together did not lead to a successful system because of last
centimeter errors in execution. Even slight inaccuracies in
navigation and extrinsic camera calibration cause the end-
effector to just be slightly off from the handle preventing
handle grasping. To tackle this problem, we close the loop
with proprioceptive feedback: predictions from visual sensors
gets the end-effector in the vicinity of the handle and the actual
grasping is done by leveraging contact sensors in the gripper
and the arm.

Two other unique aspects of our study are a) the use of
a commodity mobile manipulator and b) extensive testing
in previously unseen diverse real world environments. Many
previous papers have demonstrated specialized systems for
similar problems [4]. Constructing specialized hardware for
a given task can simplify the task at hand, at the cost of
generality to other tasks. Therefore, we test our proposed
system using the Stretch RE2, a general purpose commod-
ity mobile manipulator, without any hardware modifications.
Furthermore, this testing is conducted across 31 different
articulated objects in 10 different buildings. Testing sites
include offices, classrooms, apartments, office kitchenettes,
and lounges. Our system achieves a 61% success rate in a
zero-shot manner across this challenging testbed.

This broad study has allowed us to answer numerous
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Fig. 2: Overview of the Perception Module. Given an RGB image our modified Mask RCNN detects articulated objects and predicts the articulation type,
the handle orientation, the 2D segmentation mask, and the 2D handle keypoint. We fit a convex hull to the segmentation mask and simplify it to a quadrilateral.
We fit a plane to the depth image points that lie inside the segmentation mask to estimate the surface normal. The 2D handle and quadrilateral corners are
lifted to 3D using the depth image. All predictions are transformed to the robot base coordinate frame. The final output of the module includes the 3D handle
coordinate and surface normal in the base coordinate frame for all articulated objects, and additionally the radius for cabinets.

questions about deploying such a system in the real world:
a) what are the current bottlenecks in deploying a system for
articulating objects in novel environments, b) how accurate
should motion plans be for articulating objects, and c) what
aspects of the current pipeline could benefit from machine
learning? We find that perception is a major bottleneck for
such a system, where inability to detect objects and handles
accounts for 59% of the failures of the system. This calls for
broad datasets with labels for cabinet and drawer articulation
parameters in diverse settings. Our study also reveals that con-
trol is surprisingly robust to misestimations in the articulation
parameters. Once the end-effector has acquired a firm grasp of
the handle, the system is able to open the cabinet a non-trivial
amount even with a radius error of up to 10cm. Finally, errors
from earlier parts of the pipeline compound to lead to failures
in grasping of the handle.

II. SYSTEM DESIGN

Being able to open an arbitrary drawer or cabinet in a novel
environment requires us to a) detect the object and predict
its articulation parameters using on-board sensors, b) use the
predicted articulation parameters to generate a whole-body
motion plan, and c) adapt and execute the motion plan with the
aid of proprioceptive feedback. We first present our approach
for estimating articulation parameters given RGB-D images in
Section II-A. We then discuss our methodology for generating
a navigation target and a whole-body motion plan for opening
the given object in Section II-B. Finally, in Section II-C, we
describe how proprioceptive feedback from the robot is used
to adapt the generated motion plan during execution.

A. Predicting Articulation Parameters using On-board RGB-
D Sensors

Given an RGB-D image pair containing articulated objects,
our goal is to a) detect cabinets and drawers and b) predict
articulation parameters for the detected instances. These artic-
ulation parameters include the 3D handle location and surface

normal for all objects, and additionally the axis of rotation and
radius for cabinets. These articulation parameters help deduce
the end-effector trajectory needed to open the given object.
We predict 2D quantities from RGB images, and lift these
predictions to 3D using the depth image.

For 2D prediction from RGB images, we adopt Mask RCNN
[3]. As is, Mask RCNN predicts a 2D segmentation mask and
the class of each detected object (in our case, the articulation
type: drawer, left-hinged cabinet, or right-hinged cabinet).
We add additional heads to Mask RCNN to.predict a) the
2D coordinate of the handle, and b) the handle orientation
(horizontal or vertical).

We use the depth image to lift these 2D predictions to 3D.
For the surface normal, we fit a plane to the depth image
points within the predicted segmentation mask. For cabinets,
we also need the radius and the axis of rotation. We compute
the convex hull of the predicted 2D segmentation mask, and
simplify it to a quadrilateral. We lift the vertices of this
quadrilateral to 3D using the depth image and infer the rotation
axis from the corners, e.g. for a left-hinged cabinet we use the
left-most two points to define the axis of rotation. We use
the distance of the handle to its projected point on the axis
of rotation as the radius. Figure 2 shows an overview of the
perception module. We train our modified Mask RCNN on the
ArtObjSim dataset [2].

B. Motion Plan Generation

Our next goal is to generate a motion plan to open the given
articulated object in a collision-free manner. We build upon
past work from Gupta et al. [2] that assumes ground truth
articulation parameters and tackles the problem of converting
end-effector pose trajectories into robot joint angle trajectories.
Specifically, rather than casting it as a constrained motion
planning problem, Gupta et al. propose SeqIK, which casts
it as a trajectory optimization problem.

We extend the framework presented in Gupta et al. [2] in
three ways. First, while [2] works with the Franka Emika
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Fig. 3: Topdown Navigation Target Locations. We visualize the topdown
navigation target locations relative to the handle for each articulation type.
We use the MPAO (No neural network) method from [2] to extract these in
a data driven manner.

Panda robot, we adopt their implementation to work with
the Stretch RE2 robot, which has fewer degrees of freedom.1

Secondly, we work with predicted articulation parameters
as opposed to ground truth articulation parameters. We use
our predicted articulation parameters from Section II-A and
convert them to an end-effector pose trajectory in the same
manner. Finally, rather than finding motion plans just for the
arm assuming a fixed base position and orientation as in [2],
we obtain whole-body motion plans for interacting with a
given articulated object using our predicted trajectory. We find
this essential to fully opening a wide variety of cabinets and
drawers due to the limited number of degrees of freedom of
the Stretch RE2.

SeqIK requires an initial base position. For the initial base
position, we utilize MPAO (No neural network), a data-driven
method from [2]. Figure 3 shows the base positions found
by this procedure for drawers, left-hinged and right-hinged
cabinets. We use these as the navigation targets for each
articulation type respectively.

C. Adapting and Executing Motion Plans using Propriocep-
tive Feedback

Minor errors in state estimation, navigation and calibration
compound to prevent handle grasping. In particular, when
approaching either a horizontal or vertical handle with a wide
gripper, there is sufficient tolerance in both the horizontal and
vertical directions, but a much smaller tolerance in the depth
direction. We develop a method for contact-based correction
of the pre-grasp pose to combat this: we extend the gripper
towards the object until contact is detected. For drawers and
right-hinged objects, because the arm is largely parallel to the
surface normal of the object, we keep extending the arm in
1cm increments until contact is made. For left-hinged objects,
because the arm is largely perpendicular to the surface normal
of the object, we rotate the base by 1◦ counter-clockwise until
contact is made. See Figure 4 for a visualization of these
contact-based correction primitives.

D. Pipeline
Here, we describe the full end-to-end pipeline. The robot

begins approximately 1.5m away from the target articulated

1The Franka Emika has {3, 7, 1} degrees of freedom while the Stretch RE2
has {2, 5, 1} degrees of freedom for the base, arm, and gripper, respectively.
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Fig. 4: Corrective Motions. We visualize the corrective motions for the dif-
ferent articulation types. For left-hinged cabinets, this is a counter-clockwise
rotation in 1◦ increments. For the other objects, we extend the arm in 1cm
increments.

object. The base is arbitrarily oriented, as long as the desired
object is within the field-of-view.

Our perception module, as described in Section II-A, pro-
duces a prediction for the handle location (in the camera’s
coordinate frame), the surface normal, and the radius (if the
target object is a cabinet). We use a calibrated robot URDF to
transform the 3D predictions (handle, surface normal, axis of
rotation, and the navigation target) from the camera frame to
the base frame. After this, we generate a whole-body motion
plan using the methodology described in Section II-B. We
execute the first qpose (full robot configuration), and sub-
sequently run our contact-based correction mechanism from
Section II-C. Once the handle has been grasped, we execute
the rest of the motion plan.

III. EXPERIMENTS

We work with the Stretch RE2 robot for our experiments.
We present our full end-to-end system test results, in which
our system is evaluated across 10 buildings and a total of
31 novel articulated objects. This test set of objects does not
overlap with the set used for development. We assume the
robot previously navigated toward the target object, so for
each test it is positioned approximately 1.5m from the object
with the camera oriented to have the target in view. We allow
for some variance across tests in the exact positioning and
orientation of the robot base due to environmental constraints
and potential variance in the ending pose of any previous
navigation. In particular, the base orientation is randomly
chosen to be facing forward, oriented slightly to the left, or
oriented slightly to the right. We represent each trajectory by
ten end-effector waypoints, for which our whole-body motion
planner attempts to find joint angles. We define a successful
opening of an object if our system is able to execute at least 7
out of 10 waypoints. For cabinets, this corresponds to opening
the cabinet over 60-degrees.
End-to-end System Test. Overall, our system achieves a 61%
success rate across 31 unseen cabinets and drawers in unseen
real world environments. For example deployments of our full
pipeline in the testing environments, please refer to Figure 5.
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Fig. 5: Example roll outs of our full system in various unseen environments. For each environment, we show the following frames: before navigation, after
navigation, pre-grasp pose, during manipulation, and at the end of manipulation.

IV. DISCUSSION

In this work, we develop an end-to-end system for opening
cabinets and drawers in novel real world environments. While
our system is able to solve a majority of the novel objects
we tested on, our large scale evaluation revealed unforeseen
failure modes. This included failures in perception, navigation,
and execution, which we describe next.
Failure in Perception. One of the main failure modes we
encounter is error in perception. This failure in perception
includes failure to detect the target object and erroneous
handle orientation prediction by our Mask RCNN model.
These perception errors are due in part to testing on out of
distribution objects. The adapted Mask RCNN model is trained
on luxury homes from the HM3D dataset, whereas we mainly
test on the more readily available academic office buildings
and apartments on campus.
Failure in Navigation. Our real world system was developed
in an environment with tiled floors, so tests on carpeted floors
introduced an unanticipated failure mode. When navigating on
carpeted floors, the robot audibly strains during base rotations.
This affects both the initial navigation and the deployment of
the pre-grasp robot configuration, both of which involve base
rotation, ultimately leading to a failed grasp of the handle.

Failure in Execution. In some cases, a firm, centered grasp
of the handle would not be acquired. This would be due to
imperfect calibration of the robot leading an error in lifting
the 2D predictions to 3D, or minor navigation errors (even on
tiled floors), which would compound. In such cases, as the
cabinet was pulled open, the gripper would eventually let go
of the handle. The vast majority of the cabinets we tested on
had recoil, due to which the cabinet would close shut after
the gripper let go of the handle, even after as many as 5/10
waypoints of the motion plan had been executed.

In summary, this paper presents the design and evaluation of
a mobile manipulation system to open cabinets and drawers
using a commodity mobile manipulator. Large scale testing
across 13 test sites in 10 buildings and 31 different cabinets
and drawers reveals guidance for practitioners aiming to build
similar systems.
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