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Fig. 1: RayFronts is a real-time semantic mapping system that enables fine-grained scene understanding both within and beyond
the depth perception range. Given an example mission through multi-modal queries to locate red buildings & a water tower, RayFronts
enables: (1) Significant search volume reduction for online exploration (as shown by the red and blue cones at the top) and localization
of far-away entities (e.g., the water & radio tower). (2) Online semantic mapping, where prior semantic ray frontiers evolve into semantic
voxels as entities enter the depth perception range (e.g., the red buildings query on the right side). (3) Multi-objective fine-grained open-set
querying supporting various open-set prompts such as “Road Cracks”, “Metal Stairs”, and “Green Dense Canopy”.

Abstract—Open-set semantic mapping is crucial for open-
world robots. Current mapping approaches either are limited by
the depth range or only map beyond-range entities in constrained
settings, where overall they fail to combine within-range and
beyond-range observations. Furthermore, these methods make
a trade-off between fine-grained semantics and efficiency. We
introduce RayFronts, a unified representation that enables both
dense and beyond-range efficient semantic mapping. RayFronts
encodes task-agnostic open-set semantics to both in-range voxels
and beyond-range rays encoded at map boundaries, empowering
the robot to reduce search volumes significantly and make
informed decisions both within & beyond sensory range, while
running at 8.84 Hz on an Orin AGX. Benchmarking the within-
range semantics shows that RayFronts’s fine-grained image
encoding provides 1.34⇥ zero-shot 3D semantic segmentation
performance while improving throughput by 16.5⇥. Tradition-
ally, online mapping performance is entangled with other system
components and planners, complicating evaluation. We propose
a planner-agnostic evaluation framework that captures the utility
for online beyond-range search and exploration on prerecorded
mapping runs, and show RayFronts reduces search volume
2.2⇥ more efficiently than the closest online baselines.

I. INTRODUCTION

Open-set semantic mapping is essential for robotic systems
to reason, search, and navigate in open-world environments.
The task requires capturing both fine-grained local details and
distant beyond-range semantic cues in real-time. For instance,
as shown in Fig. 1, an aerial or ground robot may need to
localize the water or radio towers over 100 meters beyond
its depth perception capability, as well as locate any hazards
(road cracks) or interesting structures along the way (red
building). This work explores what the most effective semantic
mapping system would be to capture this information and
enable reasoning within and beyond depth sensing limitations.

Although there is a growing body of literature on open-set
metric semantic mapping [3, 14, 32, 8, 24], these methods
focus primarily on offline mapping for downstream usage in
limited environments ignoring efficiency and depth-sensing
limitations. Such representations cannot guide the robot in
search and exploration tasks as they provide no information
about the unmapped region. Other works change the way



semantics are typically encoded in a map (point clouds,
voxels, and bounding boxes) to representations that can guide
exploration (i.e semantic frontiers [36, 4], and semantic poses
[30]). However, existing semantic frontier maps are limited
to 2D indoor environments and have limited semantics due
to whole-image encoding [36] or using closed-set models [4],
whereas semantic poses [30] lack fine-grained reconstructions
and can only recognize prominent objects in an image.

In this context, we explore the question, “How to design
an efficient online mapping representation that facilitates
fine-grained scene understanding, and be aware of beyond-
range semantic entities?” We introduce RayFronts, a
semantic map representation which seamlessly integrates tra-
ditional within-depth mapping with ray-based representations,
facilitating both dense mapping within observed depth ranges
and perception beyond them. Unlike conventional represen-
tations truncated at the depth range, multi-directional seman-
tic ray frontiers retain coarse-grained far-range information,
enabling downstream planners (e.g., object-search) to reduce
their search volume significantly. Additionally, to assess the
utility of the proposed representation, we construct a planner-
agnostic benchmark and propose a new metric to measure
how effectively an online mapping strategy reduces the search
space for fast object localization and exploration. Finally, to
avoid single vector image encoding and expensive pipelines,
we introduce a language-aligned and spatially-dense encoder
that achieves state-of-the-art performance on zero-shot 3D
semantic segmentation enabling a computationally efficient,
open-world, and deployable 3D online mapping system.

Our key contributions are as follows:
C1: Unified 3D Map Representation for Within-Depth and
Beyond-Depth Perception: We develop the first-of-its-kind
open-set semantic ray frontier 3D map, which enables robots
to reason in open environments achieving up to 1.85x mIoU
in offline zero-shot performance, and are 2.2x more efficient
in reducing search volume in online mapping than the closest
offline & online baselines respectively.
C2: Planner-Agnostic Online Semantic Mapping Evalua-
tion Framework: We showcase that online semantic mapping
systems can be evaluated on their fundamental utility for
exploration, without being tightly coupled with a planner, by
developing a metric that assesses “correctly reduced search
volume”.
C3: Efficient real-time open-set online mapping system: can
run end to end at 8.84 Hz on an ORIN AGX and our efficient
dense vision-language encoder is 16.5x faster than the closest
baseline and achieves state-of-the-art on open-vocab zero-shot
3D semantic segmentation mIoU.

II. RELATED WORK

A. Dense 2D Open-Set Semantics
The rapid rise of foundation models [2] has spearheaded

progress in tasks requiring fine-grained open-set concepts
which are hard to capture with a fixed taxonomy of semantic
classes [23, 18]. CLIP [25] and its subsequent variants such
as SIGLIP [37] have shown impressive alignment between

abstract textual concepts and images. These Visual Language
Models (VLMs) initially aligned textual descriptions and im-
ages as a whole and not to particular regions or pixels. Subse-
quently, follow-up work based on supervised and unsupervised
regimes has attempted to address this issue [33]. A recurring
theme in these methods is the trade-off between efficiency and
accuracy, with the most performant approaches often using
multiple foundation models like DINOv2 [23], Grounding
DINO [19], and SAM [18]. This is not optimal for online
real-world deployment and hence we explore the applicability
of RADIO [26], a foundation model aligned with various
dense visual foundation models. While RADIO’s language
alignment is to the image as a whole, we find that employing a
simple attention trick [10] with its SIGLIP adapter enables us
to achieve state-of-the-art pixel-level language alignment and
real-time performance on embedded hardware.

B. Offline & Bounded Open-Set Semantic Mapping

Traditional semantic mapping systems have relied on
learning-based methods to detect and segment a fixed set of
concepts, with performance limited by vocabulary size and
training distribution [20, 27, 7, 21, 35, 13, 11]. With the rise of
dense 2D open-set semantics, interest has grown in open-vocab
semantic mapping systems using representations like point
clouds, voxels, and scene graphs [12]. These systems have
shown strong open-world capabilities for navigation, manipu-
lation, and scene understanding [3, 14, 32, 8, 24, 16, 34, 15].
However, most focus on offline database maps and lack online
utility for robotics, with many design choices making real-
time deployment infeasible. To address this, we introduce a
computationally efficient, fast, and deployable 3D mapping
system for online scene understanding.

C. Online & Unbounded Open-Set Semantic Mapping

While offline and bounded semantic mapping has excelled
in indoor scenes, it struggles with outdoor, unbounded, and
unstructured environments, where limited depth perception
becomes a challenge. An effective online semantic mapping
system must support both efficient exploration and fine-grained
scene understanding. VLFM [36] addresses this by encoding
semantics on 2D frontiers for object goal navigation, but it
is limited to a single object at a time and only works in
indoor settings. Similarly, Embedding Pose Graph (EPG) [30]
encodes semantics into rays from pose nodes, but lacks fine-
grained mapping and condenses the entire image into one
feature vector, risking the loss of subtle details.

In contrast, we propose a novel representation combining
semantic voxels with ray-based frontiers, capturing multiple
viewing directions and open-set features. This approach en-
ables efficient online search and rough triangulation of distant
objects, allowing us to capture both in-range and beyond-range
semantic entities. Our synergy of metric-map-based semantic
voxels and direction-based ray frontiers supports fine-grained
scene understanding and efficient exploration.
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Fig. 2: Overview of our online mapping system, RayFronts is designed for multi-objective & multi-modal open-set querying of both
in-range and beyond-range semantic entities. Given posed RGB-D images, we first extract dense features with our fast language-aligned
image encoder. Then, posed depth information and features are used to construct a semantic voxel map for in-range queries. In parallel,
RayFronts also maintains a VDB-based occupancy map to generate frontiers, which are further associated with multi-directional semantic
rays. These semantic ray fronts enable us to perform beyond-range querying of open-set concepts in the unobserved region.

III. METHOD

We present RayFronts, a unified 3D semantic mapping
system for multi-modal open-set semantic querying of both in-
range and beyond-range semantic entities. RayFronts main-
tains a semantic voxel map Vt containing voxel coordinates
and semantic features for within-range entities, an occupancy
VDB map Ot , a set of frontiers Ft denoting subsampled
boundary voxels between observed and unobserved spaces,
and semantic ray fronts Rt , a ray-based representation on the
frontiers, which contains features for beyond-range semantic
reasoning.
RayFronts operates in four steps: (1) extracting dense,

language-aligned features from RGB input through our ef-
ficient encoding pipeline, (2) fusing within-range featurized
points into a sparse semantic voxel map, (3) maintaining
an occupancy map for frontier computation and semantic
voxel pruning, and (4) ray casting beyond-range semantics
onto frontiers to semantically reason beyond the observed
map. Our system is optimized for parallel computing and
online mapping, leveraging PyTorch tensors for Vt ,Ft ,Rt
on the GPU and OpenVDB [22] for Ot on the CPU. This
design ensures efficient querying, seamless feature integration,
and adaptability to evolving environments. The pipeline and
outputs of RayFronts are illustrated in Fig. 2.

A. Extracting Dense Language-Aligned Features
There has been a rapid growth of methods that extract

dense language aligned features from RGB images. However,
existing methods fall short by (1) lacking generalization due to
limited supervision, (2) sacrificing efficiency with multi-model
multi-stage pipelines, or (3) prioritizing efficiency and gener-
alization at the cost of segmentation quality. In this work, we
adopt RADIO[26], a vision foundation model that distills key
features from CLIP[25], DINOv2[23], and SAM[18] yielding
a richer representation. However, since RADIO leverages

vanilla ViT [6], it struggles with fine-grained localization
of visual features, a critical challenge in semantic scene
understanding. To address this, we integrate the explicit spatial
attention mechanism proposed by NACLIP [10] and modify
the RADIO encoder accordingly. Specifically, we augment the
attention layer of the final ViT block by introducing a locality
constraint via an unnormalized multivariate Gaussian kernel
centered around each patch essentially pushing the model to
attend to its neighboring patches and improving locality.

To densely align the RADIO feature space with language,
we explore the available pre-trained MLP-based adaptor heads
provided by RADIO. Simply following RADIO’s original
distillation approach– projecting spatial features onto CLIP
or SIGLIP space using their respective adapters–yields subpar
performance. Instead, we use the SIGLIP summary feature
adapter to project spatial features to the SIGLIP CLS token
space, thus resulting in a spatially consistent and language-
aligned feature map and observe significant performance im-
provements over existing methods.

B. Semantic Voxels for Dense Within-Depth Queries

Given a pose Pt 2 SE3 and depth map Dt 2 RH⇥W , we
initialize a voxel grid retaining only points within the frustrum,
yielding Qt . We transform the points Qt into the camera
frame and classify its occupancy based on depth Dt . For each
occupied point, we find the associated feature via nearest-
neighbor interpolation yielding P

local
t = {(pi, fi)}M

i=1 where
pi 2R3 are point coordinates and fi 2R3+D+1 (3 for RGB, D
is feature dimension, and 1 for the hit count). Local updates are
accumulated into a buffer of m frames before being voxelized
at resolution a and integrated into the global map V .

Feature Fusion and Aggregation: Rather than complex
fusion methods used in [14, 32], we employ a simple weighted
average, where each voxel’s hit count serves as the weight
when fusing features within the same voxel. To achieve this,



we concatenate coordinate and feature tensors of accumulated
local updates P

local
t with those of global voxel map Vt . A

parallel scatter-reduce operation fuses features at the same
discretized coordinates into a single voxel.

C. Occupancy Mapping for Frontiers and Pruning

To represent occupancy map Ot efficiently, we employ
OpenVDB [22], recently used in modern 3D frontier-based
exploration works [1, 9, 17] for its sparse tree representation
and multi-resolution capability. Following standard practice,
we store log-odds occupancy o j in a signed byte. To better
tolerate dynamic environments and to avoid overflow, we
limit probocc(o j) to lower and upper limits. Fig. 2 shows
the OpenVDB map with large free voxels showing the multi-
resolution aspect of the occupancy representation.

Pruning Semantic Voxels: When accumulating voxels over
long distances and time periods, odometry drifts and dynamic
objects can introduce inconsistencies, not to mention the
growing memory consumption. To mitigate this, we prune
invalid semantic voxels by querying the occupancy map Ot
and removing those with occupancy below 0.5.

D. Finding the “Fronts”: Computing 3D Frontiers

We identify frontiers by iterating over all free observed
voxels using efficient OpenVDB iterators and examining their
neighbors. A voxel is considered a frontier if its neighbors
meet the minimum thresholds for unobserved (minunobsrv),
occupied (minocc), and free (min f ree) counts, allowing us to
emphasize frontiers near surfaces or open space as needed. To
reduce density, we subsample the frontier map using a coarser
voxel grid of size b . Fine-grid frontiers are accumulated into
a coarser grid, and cells with enough frontiers remain as
frontiers.

E. Semantic Ray Frontiers for Beyond-Depth Mapping

Need for richer frontiers: Existing semantic frontier meth-
ods have fundamentally constrained beyond-range semantic
encoding, where only a single object can be pursued at a
time due to feature collisions from distinct objects observed
through the same frontier. To enable multi-object semantic
guidance for search and exploration, we transition from con-
ventional semantic frontiers Fsem = {(pk, fk)}F

k=1 to semantic
ray frontiers Rsem = {(or,qr,fr, fr)}R

r=1 , where or is ray
origin, qr 2 [�p,p) and fr 2 [0,p) are azimuthal and zenith
angles, and fr are semantic features. This shift drastically
enhances the mapping system by allowing efficient storage of
rich multi-object semantics with minimal feature collisions,
enabling rough triangulation of object locations, and reducing
the search space volume needed for exploration. We discuss
the ray mapping process (observe, associate, discretize &
accumulate) and how rays are pruned and propagated below.

Observe: To identify out-of-range regions in the feature
map Ft we compute a boolean mask Mt 2 RH⇥W from the
depth Dt (obtained via stereo, LiDAR, or monocular depth es-
timation). The mask encompasses either +• values from depth
sensors or far low-certainty values. Mt is eroded to prevent

semantic leakage at object boundaries, and used to select the
semantic pixels to propagate as rays R

local
t = {(or,dr, fr)}Ht

r=0
where or 2 R3 is the ray and camera origin, dr 2 R3 is
the normalized direction vector, and fr represents semantic
features.

Associate (Matching Rays to Frontiers): In the presence
of depth information, rather than keeping rays at the robot’s
origin as in [30], we leverage the mapped area to push rays
closer to their observed entities, improving localization. For
each semantic ray (or,dr, fr), we select a frontier from the
candidate set Ft+1 through a two-step filtering process. First,
we prune frontiers by (1) removing those not in front of the ray
(2) computing the shortest orthogonal distance dortho between
the ray and frontiers, discarding those where dortho > b
(exceeding the frontier grid cell size), and (3) calculating the
distance from ray origin or to frontier origin p, obtaining dorig
and removing frontiers where dorig > 4⇥depth range.

Next, for the remaining k candidate frontiers, we compute
a cost function

dcost =

 
dortho

max({dr
ortho}k

r=0)
+

dorig

max({dr
orig}k

r=0)

!
/2,dcost 2 [0,1]

(1)
We select the frontier with the minimum dcost as the best
match. We qualitatively find that utilizing both dortho and dorig
improves results and prevents distant frontiers from receiving
noisy semantics.

For further refinement, we optionally apply ray tracing,
marching each ray through the occupancy map Ot+1 until
it reaches its assigned frontier or encounters occupied or
unobserved (possibly occupied) cells. At this stage, each
semantic ray is associated with a frontier, updating its origin
(or) to the corresponding frontier origin p. Since we lack depth
information about the underlying semantic entity, we maintain
the ray’s direction dr when shifting its origin.

Discretize and Accumulate (“Ray Binning”): Similar
to voxelization techniques, we organize semantic rays into
angle bins with a resolution of y degrees. The normalized
ray directions dr are converted to spherical angles using:
qr = atan2(d1

r ,d0
r ), fr = acos(d2

r ) where atan2 is the four-
quadrant inverse tangent. We then discretize these angles and
merge rays that correspond to the same frontier and the same
angle bin from both the local update R

local
t and the global set

Rt . We use 1�dcost for weighing the features while merging,
assigning lower trust to high-cost associations. This yields the
updated ray-frontier Rt+1.

Pushing the ray fronts onward: Semantic ray frontiers
must be updated as new areas are mapped. After computing
the frontier update Ft+1, we use a voxel grid to perform a set
intersection between all ray origins and frontier origins, similar
to pruning voxels, and remove rays no longer associated
with active frontiers. If ray tracing is enabled, removed rays
are added back to the ray accumulation buffer to be re-
cast in the next iteration. This preserves previously observed
semantics that may no longer be directly visible as the frontier
shifts (e.g., from a side view). However, without ray tracing,
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Fig. 3: An illustration of our proposed planner-agnostic metric
(Search Cut Volume Recall) for open-world online search bench-
marking. Intuitively, the metric captures “How much of the search
volume is eliminated correctly?” An optimal mapper should promptly
and accurately reduce the search space, enabling fast multi-object
localization and exploration.

removed rays would continue to propagate indefinitely, so we
disable the behavior under that setting. In our experiments, we
use ray tracing unless otherwise stated.

IV. EXPERIMENTAL SETUP

A good online mapping system should (1) intelligently
guide the robot toward regions of interest in any environment,
eliminating irrelevant volumes early, (2) accurately capture
fine-grained open-set semantics within a metric map, and (3)
do so efficiently. In this section, we first introduce our pro-
posed online mapping evaluation framework, which assesses
the utility of a mapping system in guiding exploration with-
out a planner in-the-loop, and introduce competitive baseline
representations. We then present our extensive offline map
evaluation following established protocols. Finally, we conduct
a deployability and throughput analysis.

A. Planner-Agnostic Online Semantic Mapping Evaluation

Dataset: Originally designed to challenge visual SLAM
with large, cluttered, long-tail objects in indoor and
outdoor environments, TartanAirV2[31] serves as a stress
test for our representation. To simulate scenarios with
severely limited depth, we choose four large outdoor scenes
AbandonedCableday, Factory, Downtown and
ConstructionSiteOvercast where bounding boxes
span approximately 8 million m3 with a 50m range cutoff. We
generate ground truth occupancy (defining the scene volume)
and a semantic label map at 1-meter voxel resolution from
the provided posed RGBD input.
Baselines: There are no established online mapping baselines
for 3D open-world environments. Therefore, we take inspira-
tion from existing works and design the following baselines,
keeping the encoder fixed to isolate the impact of our mapping
approach:

• Semantic Poses (Sem Pose): Emulates EPG [30] by using
global encoding for the image, resulting in a single ray
per frame located at the robot origin.

• Semantic Voxels (Sem Voxels): Subsumes representa-
tions that encode only within-range semantics [32, 14, 8].

• Semantic Frontiers: Emulates in 3D the 2D approaches
that paint frontiers with semantics [36, 4]. We recog-
nize that there are two ways semantic frontiers can be
interpreted; (1) As a spherical region encompassing the
semantic entity (i.e Spherical Sem Fronts), or (2) as a
single ray pointing away from the observed region (i.e
Unidirectional Sem Fronts). We evaluate both.

We define search volume as the unmapped region unless
further evidence is provided. Ray-based approaches cast search
cones while Spherical Sem Fronts define a sphere volume
extending to the nearest frontier. Multiple search volumes
are summed in a voxel grid, counts are normalized, and
thresholded at 0.05 to get the final search volume for a
class. For Unidirectional Sem Fronts, frontier directions are
inferred using the occupancy map Ot by computing a weighted
combination of all directions around a frontier in a 3x3x3
window where mapped voxels have a weight of -1 (Pushing
away) and unmapped voxels have a weight of +1 (Pulling
toward).
Evaluation Protocol: We ask the question “Can an online
semantic mapping system’s utility for search and exploration
be assessed independently of specific planners ?” Yes, the
key is examining how accurately and efficiently the map
constrains the search space. Traditional mapping metrics such
as mIoU, mAcc, F1 measure fine-grained semantic localization
but overlook search volume efficiency, as they ignore true
negatives. In search and exploration, a high true negative
rate in the unobserved region reduces wasted search time.
Therefore, for beyond-range search volume estimation, we
introduce a novel metric below, and to evaluate within-range
fine-grained online performance, we use the area under the
mIoU-time curve.
Search Cut Volume Recall Metric: Our proposed metric,
shown in Figure 3, measures how accurately and efficiently a
mapping system cuts search volume. The intuitive definition is
to compute total unmapped volume volunmapped and subtract
the search volume from it, however to avoid punishing true
positives, we define search cut volume (SCV) as:

SCV = 1�
FPunmapped

volunmapped
, SCV 2 [0,1] (2)

To temper the metric against incorrectly cutting down volume,
we compute Recall in the unmapped region and multiply it
with SCV yielding the Search Cut Volume Recall (SCVR)
metric:

SCV R = SCV ⇤
T Punmapped

FNunmapped +T Punmapped
, SCV R 2 [0,1]

(3)
The SCVR metric is robust to both naive cases (1) not
constraining the search volume, or (2) constraining it to 0
volume, yielding 0 for both. For an aggregate, we compute



TABLE I: Online & Unbounded Semantic Mapping Benchmarking on TartanAirV2 [31]. Ranking shown as first , second , and third .

0m Depth (AUC) " 10m Depth (AUC) " 20m Depth (AUC) "

Methods mIoU(%) SCV(%) Recall(%) SCVR(%) mIoU(%) SCV(%) Recall(%) SCVR(%) mIoU(%) SCV(%) Recall(%) SCVR(%)

Sem Poses 0.00 11.37 91.91 4.02 – – – – – – – –
Sem Voxels – – – – 20.49 0.00 100.00 0.00 13.03 0.00 100.00 0.00
Spherical Sem Fronts – – – – 20.49 18.00 82.35 0.40 13.03 13.33 87.02 0.41
Unidirectional Sem Fronts – – – – 20.49 16.12 85.93 3.15 13.03 11.58 89.54 2.07
RayFronts (Ours) 0.00 36.59 75.37 16.27 20.49 22.94 81.15 7.08 13.03 14.32 88.69 4.56

the area under the SCVR-time curve, stopping time for each
class when 50% of it has entered the mapped region. To further
assess the robustness of RayFronts, we vary depth sensing
range at 0m, 10m, and 20m.

B. Offline 3D Open-Vocabulary Semantic Segmentation

Datasets: We follow prior work [14, 8, 32] and evalu-
ate on Replica (office[0-4], room[0-2]) and ScanNet
(scene[0011,0050,0231,0378,0518]). In line with
previous protocols, we report results while ignoring back-
ground classes (“floor”, “wall”, “ceiling”, “door”, “window”).
However, we additionally evaluate across all classes to demon-
strate our ability to handle background seamlessly. More-
over, to showcase RayFronts’s effectiveness in outdoor,
unstructured, “in-the-wild” environments, we further evaluate
on the TartanAirV2 [31] scenes referenced in IV-A excluding
methods that cannot function outdoors.
Baselines: We compare our method with two categories of
approaches: (1) vision-language representations that create 3D
semantic maps, namely, ConceptFusion [14], ConceptGraphs
[8], and HOV-SG[32]; and (2) zero-shot semantic segmen-
tation encoders, namely, NACLIP[10] and Trident[28]. We
extend the latter encoder-based methods to 3D using the same
projection and fusion method as our system.
Evaluation Protocol: We follow standard open-vocabulary
semantic segmentation evaluation protocols. We generate 3D
segmentations by running HOV-SG and ConceptGraph code
ensuring an accurate representation of their scene graph
method. For all others, we generate segmentations by com-
puting the cosine similarity between the embedded feature and
the class-name text embedding, making a voxel prediction if
its softmax probability exceeds 0.1. We encode class names
using each method’s specified templates. For our approach,
we follow NACLIP and use 80 templates [10], with a prompt
denoising [38] threhsold of 0.5 to suppress irrelevant classes.
We also apply k-NN matching (k=5) following HOV-SG [32]
protocol, assigning each GT voxel the majority label. All
baselines use the ViT-L model architecture for consistency.
We resize images to 480x640, apply a frame skip of 10, 5cm
voxels for Replica and ScanNet and 1m voxels for TartanAir.

V. RESULTS & DISCUSSION

A. Online Semantic Mapping

Table I summarizes online performance of the five meth-
ods in their respective operating ranges. We observe that
RayFronts excels and is the upper bound across depth

ranges. Sem Poses fails to capture any fine-grained reconstruc-
tions scoring 0 mIoU-AUC, while Sem Voxels fails to provide
any information about the unmapped region scoring 0 SCVR-
AUC. At 0 depth range, RayFronts attaches dense semantic
rays at each pose as opposed to the global encoding scheme
employed by Sem Poses. This allows us to encode non-
prominent objects seamlessly and results in a ⇠ 4⇥ SCVR-
AUC than Sem Poses. This observation is illustrated in Fig. 4
where for a simple prominent object such as “building”, both
Sem Poses and RayFronts perform similarly. However,
for a more distant object like “chimney”, Sem Poses fails
to capture its semantics entirely. At higher depth ranges, we
observe that RayFronts consistently outperforms semantic
frontier baselines at ⇠ 2.2⇥ the SCVR-AUC. We attribute this
to (1) less semantic collisions as distinct objects are unlikely to
be fused in the same ray unlike semantic frontiers which can
have many collisions, (2) better preservation of the angle at
which the semantic entity was observed from, and (3) allowing
each frontier to have multiple rays attached, increasing the
density of beyond-range semantics. RayFronts is superior
to all baselines across depth ranges empowering both fine-
grained localization and beyond-range guidance.

B. Offline 3D Semantic Segmentation

Table II provides a detailed comparison of the performance
between our framework and other zero-shot approaches, out-
lined in Section IV-B. RayFronts consistently outperforms
the baselines in mIoU, and achieves SOTA performance
beating the next best baselines by +18.07% and +9.63% mIoU
on Replica and Scannet, respectively, excluding background.
RayFronts is also able to handle background seamlessly
with its single-forward pass approach while segment-and-
encode approaches fall short.

For outdoor in-the-wild performance on TartanAirV2, Ta-
ble III shows that RayFronts exceeds the performance of
the baselines by 3.36% mIoU. While Trident-3D serves as a
close second to our approach and achieves a slightly higher
f-mIoU on TartanAirV2 by a marginal 0.13%, it does so at
the cost of integrating multiple foundational models into their
pipeline, which significantly reduces efficiency—an essential
factor for online semantic mapping.

C. Encoder & Mapping Throughput Analysis

To assess deployability, we run RayFronts on an NVIDIA
Jetson AGX Orin and perform a quantitative comparison of
image encoder throughput shown in Fig. 5. Our mapping
system achieves SOTA performance in 3D open-set semantic
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Fig. 4: RayFronts consistently surpasses baselines for online semantic mapping. Two query scenarios are shown: (1) querying for a
prominent object (i.e Building) that enters depth range, and (2) a distant object (i.e Chimney) that remains beyond range. Through unified
dense voxel mapping, and beyond-range semantic ray frontiers, RayFronts sets the upper-bound in both scenarios.

TABLE II: Offline 3D Semantic Segmentation Benchmarking on Indoor Datasets.

Replica [29] ScanNet [5]

Without Background With Background Without Background With Background

Methods mIoU(%) f-mIoU(%) Acc(%) mIoU(%) f-mIoU(%) Acc(%) mIoU(%) f-mIoU(%) Acc(%) mIoU(%) f-mIoU(%) Acc(%)

ConceptFusion [14] 21.07 31.51 35.65 20.38 35.75 41.58 21.76 26.71 34.13 18.57 23.06 28.77
ConceptGraphs [8] 11.63 16.61 19.80 11.72 21.35 28.28 21.62 24.32 31.04 20.83 23.61 35.80
HOV-SG [32] 16.93 31.45 34.74 19.29 30.64 35.17 26.79 36.05 44.17 23.48 28.92 38.52
NACLIP-3D [10] 20.37 35.08 47.47 15.30 16.98 26.23 31.66 39.03 51.65 22.32 24.32 33.46
Trident-3D [28] 21.30 43.34 54.79 20.63 38.53 50.31 29.97 37.62 51.06 24.80 27.77 38.43
RayFronts (Ours) 39.37 62.03 68.80 27.73 43.37 54.45 41.29 46.42 56.76 32.29 39.04 49.15

TABLE III: Offline 3D Semantic Segmentation Benchmarking on an
Outdoor Dataset (TartanAirV2 [31]).

Methods mIoU (%) f-mIoU (%) Acc (%)

ConceptFusion [14] 5.84 32.78 39.76
NACLIP-3D [10] 9.66 40.82 54.10
Trident-3D [28] 9.86 43.56 55.34
RayFronts (Ours) 13.22 43.43 57.26

segmentation with 1.34x the mIoU of Trident while being
16.5x faster, running at 17.5 Hz, and with only 46% of the
parameters. While NACLIP has similar throughput, we surpass
it by a significant 1.81x in mIoU. ConceptFusion’s 0.03 Hz
throughput makes it impractical for real-time use.

Furthermore, we test the end-to-end throughput of
RayFronts on a real-world outdoor scene using pre-
recorded data from a mobile ground robot. We use a reso-
lution of 224x224, 30cm voxel size, and the base encoder
model, while compressing features to top 100 PCA compo-
nents (retaining ⇠ 80% variance), and disabling ray-tracing.
RayFronts runs real-time at 8.84 Hz on Orin AGX.

D. Qualitative Real-World Study

To evaluate RayFronts in unbounded, open-world set-
tings, we record a run through an unstructured fire train-
ing facility with a Zed-X camera. As shown in Fig. 1,

Fig. 5: RayFronts provides state-of-the-art mIoU & 17.5 Hz
throughput on an AGX Orin. It surpasses Trident with 1.34x higher
mIoU and a 16.5x speedup, while achieving 1.81x higher mIoU than
NACLIP, which operates at a similar throughput.

RayFronts accurately reconstructs fine-grained details (e.g.,
“road cracks”) while detecting far-range objects (e.g., “water
tower”), demonstrating that RayFronts empowers robots
within and beyond depth-sensing limitations in open-world
environments.



VI. CONCLUSION

We present RayFronts, a real-time semantic mapping
system for multi-modal open-set scene understanding for
both within- and beyond-range mapping. Our key insight,
semantic ray frontiers, enables open-set queries about observa-
tions beyond depth mapping by associating beyond-depth ray
features with the map’s frontiers. This allows RayFronts
to significantly reduce search volumes while retaining fine-
grained within-range scene understanding. RayFronts im-
proves open-set image encoding with an efficient language-
aligned encoder, and introduces a new planner-agnostic metric
for open-world search. We achieve state-of-the-art results in
3D open-set semantic segmentation, strong performance in
online mapping, and efficient encoder throughput. Our future
work aims to include instance differentiation in RayFronts
and planning integration to facilitate online exploration.
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LIMITATIONS

While RayFronts is the upper-bound of the online map-
ping baselines in correct search volume reduction, it also has
the highest memory consumption. However, RayFronts can
be tuned down by reducing ray angle bins down until a single
bin (becoming “semantic frontiers”), or reducing depth range
down until 0, giving the flexibility to achieve the best trade-off
for an application.
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Abhinav Valada, and Wolfram Burgard. Hierarchi-
cal Open-Vocabulary 3D Scene Graphs for Language-
Grounded Robot Navigation. In Proceedings of Robotics:
Science and Systems, Delft, Netherlands, July 2024. doi:
10.15607/RSS.2024.XX.077.

[33] Jianzong Wu, Xiangtai Li, Shilin Xu, Haobo Yuan,
Henghui Ding, Yibo Yang, Xia Li, Jiangning Zhang,
Yunhai Tong, Xudong Jiang, et al. Towards open
vocabulary learning: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 46(7):5092–
5113, 2024.

[34] Quanting Xie, So Yeon Min, Tianyi Zhang, Kedi Xu,
Aarav Bajaj, Ruslan Salakhutdinov, Matthew Johnson-
Roberson, and Yonatan Bisk. Embodied-rag: General
non-parametric embodied memory for retrieval and gen-
eration. arXiv preprint arXiv:2409.18313, 2024.

[35] Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael
Bloesch, Andrew Davison, and Stefan Leutenegger. Mid-
fusion: Octree-based object-level multi-instance dynamic
slam. In 2019 International Conference on Robotics and
Automation (ICRA), pages 5231–5237. IEEE, 2019.

[36] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang
Wang, and Bernadette Bucher. Vlfm: Vision-language
frontier maps for zero-shot semantic navigation. In

https://doi.org/10.1145/2504435.2504454


2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 42–48. IEEE, 2024.

[37] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-
training. In CVPR, pages 11975–11986, 2023.

[38] Chong Zhou, Chen Change Loy, and Bo Dai. Extract
free dense labels from clip. In European Conference on
Computer Vision, pages 696–712. Springer, 2022.

APPENDIX

A1. ONLINE SEMANTIC MAPPING VISUALIZATIONS

Fig. A.1 shows illustrations of the different baselines men-
tioned in Section IV-A. The top left part of the figure highlights
how RayFronts can avoid semantic feature collisions (the
case where different semantic features are forced to be fused
together) by utilizing multiple rays to describe the different
semantic entities. Whereas semantic frontier approaches (irre-
spective of the unidirectional/spherical search volume method)
can fail when semantically different entities are observed
through the same frontier. The top right part of the figure
emphasizes where global encoding approaches like Sem Poses
can fail to capture non-prominent objects in the presence
of a large centered entity. The illustration provides further
explanation for Sem Poses’s inability to capture chimneys in
the AbandonedCableDay scene as shown in Figs. A.2 and 4.
Finally, the bottom row illustrates how each baseline computes
its search volume. Spherical Sem Fronts can fail to capture
a distant object, with increasing radius cubically increasing
search volume. Unidirectional Sem Fronts is highly sensitive
to the mapped region topology since it uses it to infer the
semantic ray direction, and in the illustrated case, it fails. Sem
Poses fails to utilize depth information to push the ray further
onto the mapped region boundary for better localization. In
contrast with all baselines, RayFronts is able to accurately
determine the direction of the ray and limit the search volume
efficiently, utilizing depth information if available.

Fig. A.2 visualizes the two query scenarios shown in
Fig. 4 with ground truth generated at an 80m cutoff (Highest
value that fits in our memory) for further clarity. The top
block shows search volumes for building at a particular
time step. At 20m depth sensing range, it is clear that
RayFronts achieves the best search volume, having 1.35 ⇥
higher SCVR than Unidirectional Sem Fronts. Spherical Sem
Fronts struggles to cast a search volume that encompasses
big objects, whereas Unidirectional Sem Fronts has some
erroneously inferred ray directions. At 0m range, both Sem
Poses and RayFronts perform similarly. Furthermore,
the bottom block shows the search volume of distant non-
prominent objects that never come into the depth sensing
range. At 0m range, Sem Poses fails to capture the semantics
and fails to reduce search volume, yielding an SCVR of 0,
whereas RayFronts provides meaningful areas to explore.

A2. OFFLINE SEMANTIC MAPPING VISUALIZATIONS

Fig. A.3 showcases open-vocabulary semantic segmentation
samples across different datasets, while Fig. A.4 highlights the
open-vocabulary capabilities of RayFronts by showing the
segmentations of multiple long-tail classes.
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Fig. A.1: Top left shows how RayFronts is able to avoid feature collisions through the use of multiple rays that capture distinct semantics
observed through the same frontier, where semantic frontier approaches [4, 36] fail. The top right illustrates that even with no depth
information, RayFronts dense language-aligned encoding can allow it to capture non-prominent semantics where semantic pose approaches
[30] fail. The bottom row highlights that RayFronts is the upper bound in accurately reducing search volume.
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Fig. A.2: Two query scenarios are shown with GT generated at 80m as opposed to 50m cutoff for more clarity: (1) querying for a prominent
object (i.e, Building) that enters depth range, and (2) a distant object (i.e, Chimney) that remains beyond range. Through unified dense voxel
mapping and beyond-range semantic ray frontiers, RayFronts sets the upper bound in both scenarios.



Fig. A.3: Sample visualizations of offline semantic mapping generated by RayFronts for scenes from Replica [29] (room0 and office2),
ScanNet [5](scene0050 and scene00378), and the chosen four scenes from TartanAir [31]. “RGB”, “GT” and “PRED” refer to the RGB
scene reconstruction, Ground Truth semantics, and semantic segmentation prediction by RayFronts, respectively, for each corresponding
scene. RayFronts achieves SOTA mIoU for 3D open-vocabulary semantic segmentation.

Fig. A.4: Examples of long-tail classes segmented by RayFronts across outdoor scenes from TartanAir [31]. We set the voxel size to 0.5
(50cm) for the visualizations. For each set, we present the RGB image, the corresponding 3D reconstructed view, and the classified voxels
left to right respectively. RayFronts effectively segments long-tail concepts.
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