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Abstract—In Embodied Question Answering (EQA), agents
must explore and develop a semantic understanding of an unseen
environment to answer a situated question with confidence. This
problem remains challenging in robotics, due to the difficulties
in obtaining useful semantic representations, updating these
representations online, and leveraging prior world knowledge
for efficient planning and exploration. To address these limi-
tations, we propose GraphEQA, a novel approach that utilizes
real-time 3D metric-semantic scene graphs (3DSGs) and task
relevant images as multi-modal memory for grounding Vision-
Language Models (VLMs) to perform EQA tasks in unseen
environments. We employ a hierarchical planning approach that
exploits the hierarchical nature of 3DSGs for structured planning
and semantics-guided exploration. We evaluate GraphEQA in
simulation on two benchmark datasets, HM-EQA and OpenEQA,
and demonstrate that it outperforms key baselines by completing
EQA tasks with higher success rates and fewer planning steps.
We further demonstrate GraphEQA in two real-world home and
office environments. Videos and code: grapheqa.github.io.

I. INTRODUCTION

Embodied Question Answering (EQA) [9] is a challenging
task in robotics, wherein an agent is required to explore
and understand a previously unseen environment sufficiently
well, to answer an embodied question in natural language.
Accomplishing this task efficiently requires agents to rely on
both commonsense knowledge of human environments as well
as ground its exploration strategy in the current environment
context. For example, to answer the question “How many
chairs are there at the dining table?”, the agent might rely
on commonsense knowledge to understand that dining tables
are often associated with dining rooms and dining rooms
are usually near the kitchen towards the back of a home. A
reasonable navigation strategy would involve navigating to the
back of the house to locate a kitchen. To ground this search
in the current environment, however, requires the agent to
continually maintain an understanding of where it is, memory
of where it has been, and what further exploratory actions
will lead it to relevant regions. Finally, the agent needs to
observe the target object(s) and perform visual grounding to
reason about the number of chairs around the dining table, and
confidently answer the question correctly.

Maintaining a concise and effective memory and using
it to take actions in the environment is critical for solving

EQA tasks. Prior works have demonstrated the impressive
commonsense reasoning capabilities of Vision Language Mod-
els (VLMs) as planning agents, while leveraging a seman-
tic map for retrieval [14] or semantic exploration [39]. In
such approaches, the VLMs are not grounded in the current
environment, and commonsense reasoning and context-based
decision-making are disconnected. Recent works [38, 44, 3,
53, 55] focus on maintaining memory modules that can be
queried by VLM agents for grounded planning. To construct a
semantically rich memory, prior works either maintain a large,
extensive set of images [55, 31] or have to perform an expen-
sive offline processing step to obtain a compact representation
[3, 53, 54]. Thus, such semantic memory modules are either
semantically rich [53, 14, 49], compact [38, 44], or online
[44], but not all at the same time.

To address these limitations, we propose GraphEQA, an ap-
proach for embodied question answering that builds an online,
compact, multimodal semantic memory combining global,
semantically-sparse, and task-agnostic information from real-
time 3D scene graphs [19] with local and semantically-rich
information from task-relevant images [54]. GraphEQA uses
this multimodal representation for grounding vision-language
planners to solve EQA tasks in unseen environments. Specif-
ically, we utilize a recent spatial perception system [19] that
incrementally creates a real-time 3D metric-semantic hierar-
chical scene graph (3DSG), given sequential egocentric image
frames. We further augment this scene graph with semantic
room labels and semantically-enriched frontiers, while main-
taining a task-relevant visual memory that keeps track of task-
relevant images as the robot explores the environment. Finally,
we employ a hierarchical planning approach that utilizes the
hierarchical nature of scene graphs and semantically relevant
frontiers for structured planning and exploration in an unseen
environment before using the multimodal memory to answer
the embodied question with high confidence.

We demonstrate that given our real-time multimodal mem-
ory and hierarchical planning approach, the agent is able to
accomplish long-horizon tasks with significantly fewer VLM
planning steps, explores explainable task-relevant frontiers,
and succeeds in EQA tasks with a higher rate than previous
approaches. We demonstrate our results on the HM-EQA

https://grapheqa.github.io
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Fig. 1. Overview of GraphEQA: A novel approach for utilizing real-time 3D metric-semantic hierarchical scene graphs and task-relevant images as
multimodal memory for grounding vision-language based planners to solve embodied question answering tasks in unseen environments.

[39] and OpenEQA [30] datasets in the Habitat simulation
environment [56] and also in the real world using the Hello
Robot Stretch mobile manipulator in two home and two office
scenes. The key contributions of this work are as follows:

• We present GraphEQA, a novel approach for using real-
time 3D metric-semantic hierarchical scene graphs and
task-relevant images as multimodal memory, for ground-
ing VLMs to solve EQA tasks in unseen environments.

• We propose an approach to enrich 3DSGs with 1) seman-
tically enriched frontiers and 2) semantic room labels.

• We propose a hierarchical VLM-based planning approach
that exploits the hierarchical nature of the enriched 3DSG
for structured exploration and planning.

• We provide extensive experimental results, both in simu-
lation on the HM-EQA [39] and OpenEQA [30] datasets,
and in the real-world in two home and two office en-
vironments, using the Hello Robot Stretch RE2 mobile
manipulator.

II. RELATED WORK

A. 3D Semantic Scene Graph Representations for Planning

3D semantic scene graphs (3DSGs) [4, 23, 40, 48, 13]
have emerged as compact, semantically-rich representations
of indoor environments, spurring advances in both offline
[49, 14, 25, 6] and online [19, 29, 52] prediction. Offline
approaches [49, 14] focus on enriching 3DSG nodes and edges
with open-vocabulary semantics via Vision-Language Models
(VLMs) [24, 35], supporting retrieval-based, language-guided
tasks. Online methods [19, 29] enable real-time deployment of
embodied agents but often rely on closed-set semantics [19] or
fixed task sets [29], limiting open-world generalization. Our
approach bridges these paradigms by building a multimodal
memory: an online-constructed 3DSG with closed-set seman-
tics guides a VLM agent toward task-relevant areas to capture
semantically rich images [54], enabling open-world embodied
question answering (EQA). Recent work has leveraged textual
3DSG representations for VLM-based planning [38, 15, 36, 1],
primarily targeting object search or rearrangement tasks, but

without addressing the deeper semantic understanding required
for EQA. Other spatio-temporal representations of environ-
ments have also been effective for planning, e.g., [27], which
constructs a custom 3D data structure to maintain dynamic
memory.

B. VLMs for 3D Scene Understanding and Planning
Several previous works leverage the commonsense rea-

soning capabilities of foundation models for long-horizon
planning [2, 17, 18]. However, these methods are not grounded
in the context of the current environment and additional tools
are required to translate the LLM plan to executable actions
[8, 26, 17, 45]. Previous works have explored the use of VLMs
for building dense queryable open-vocabulary 3D semantic
representations using explicit pixel-level [10, 33, 16, 60, 20]
or implicit neural [41, 22, 47] representations. However, these
maps are built offline, before they are used for downstream
retrieval-based tasks. Moreover, such dense representations
are not scalable to large environments and cannot be used
to ground VLM-based planners. Recent advancements in
grounding VLM-based planners using videos [59, 55] are
promising, but struggle with scalability for long-horizon tasks
in large environments. VLMs have been used as planners while
leveraging semantic maps for retrieval [7, 14, 49] or semantic
exploration [39, 61, 57, 42, 32], however such approaches
disconnect context-based decision-making and commonsense
reasoning. Offline methods that build topological maps [43],
keyframe selections [54], 3D semantic graphs [14, 49, 34, 25,
6] and experience summaries [3, 53, 5, 51] are unsuitable for
real-time deployment in novel settings. Online semantic scene
graphs, while real-time, are limited by closed-set semantics.
Our approach introduces an online, compact, and semantically
rich multimodal memory to effectively ground VLM planners
for EQA tasks.

C. Embodied Question Answering
Embodied Question Answering [9, 12, 50, 11] has emerged

as a challenging paradigm for testing robotic task planning
systems on their ability to incrementally build a semantic
understanding of an environment in order to correctly answer



an embodied question with confidence. Ren et al. [39] build an
explicit task-specific 2D semantic map of the environment to
guide exploration, Anwar et al. [3], Xie et al. [53] build offline
experience modules that the LLM can query, and Majumdar
et al. [31] uses video memory to answer embodied questions
using long-context VLMs. We focus on building agents that
do not disconnect the semantic memory from the planner by
grounding the planner in a compact scene representation for
solving EQA tasks online.

III. METHOD

A. Preliminaries
Hierarchical 3D Metric-semantic Scene Graphs. 3D metric-
semantic scene graphs (3DSGs) provide a structured, layered
representation of environments and encode spatial, semantic,
and relational information [4, 23, 40]. Recent works like Clio
[29], Hydra [19], and Open Scene Graphs [28] introduce
efficient real-time frameworks for incremental construction of
metric and semantic SG layers, encoding low-level geometries
as well as high-level semantics at multiple levels of abstrac-
tion including objects, regions, rooms, buildings, etc. 3DSGs
are comprised of layers that govern how buildings, rooms,
objects, and regions are connected, a structure we leverage in
GraphEQA.
2D Occupancy Mapping and Frontier Detection. 3D voxel-
based occupancy maps are a simple and effective way for
storing explored, occupied, and unexplored regions of an en-
vironment for planning and navigation. As the robot explores,
using depth data and camera intrinsics, occupancy of the
voxels is updated using Volumetric Truncated Signed Distance
Function (TSDF) fusion. TSDF integrates depth observations
to update voxels as occupied or free, while areas beyond
a certain threshold are marked unexplored. Typically, the
3D occupancy map is projected into 2D, where frontiers—
boundaries between explored and unexplored regions—are
identified to guide further exploration. We employ this ap-
proach in our method for identifying frontiers, clustering them
and adding them to the scene graph.

B. Problem Formulation
An overview of our proposed method is shown in Figure 2.

Given a multiple choice question q, we wish to find the
correct answer a⇤

2 A where A is the set of multiple-
choice answers to question q available to the agent. To
find a⇤, the agent is equipped with a VLM-based planner
V(q, Se

t , {Ik}
K
k=1, Ht, Xt) = (at, ct, ut), where S

e
t is the

enriched scene graph constructed online at planning time t,
and includes frontier nodes from 2D the occupancy map
(Section III-A). {Ik}

K
k=1 is a small set of task-relevant images

maintained in memory (Section III-D), at is the current best
answer to the multiple choice question q, ct is the confidence
output by the VLM with a value between 0 and 1, and ut is
the next action the agent should take in the environment. Ht

represents the accrued history up to time t and Xt represents
the current state of the agent. We query the VLM planner
V (Section III-E) at time t with the inputs described above,

with the scene graph S
e
t continually being constructed and a

set of images {Ik}
K
k=1 chosen based on task and semantic

relevance. The planner then outputs a high-level action ut

which is executed in the environment while the scene graph,
visual memory, and frontiers are all updated in real time. In
the following sections we provide details for each of these
components.

C. Scene Graph Construction and Enrichment

We use Hydra [19] to construct a layered metric-semantic
scene graph (see Appendix VII-C), while also maintaining a
2D occupancy map of the environment depicting the explored,
occupied, and unexplored navigable regions of the environ-
ment as mentioned in Section III-A. We perform room and
frontier enrichment steps to enable semantic-guided explo-
ration and hierarchical planning.
Room enrichment: Room nodes in Hydra’s 3DSG are as-
signed generic labels such as R0, R1, etc. To enrich them with
semantic information, we prompt an LLM to assign semantic
labels to each of the room nodes. We use a simple prompt
“Which room are these objects <object list> most likely
located in?” where <object list> is the list of all objects
located in a certain room in the scene graph. The output of
the LLM is then used to update the room labels.
Frontier enrichment: To enrich our 3DSG with semantic in-
formation that can enable task-relevant exploration, we extract
frontier nodes from the 2D occupancy map, cluster them, and
add them as independent nodes to the scene graph. Next, we
find top-j object nodes nearest to each clustered frontier node,
within a maximum distance d. We add edges to the scene graph
connecting each frontier node to its top-j object neighbors.
This semantic information can now be utilized by a VLM-
based planner to select the most semantically-relevant frontier
to explore next. For general exploration, for example, it could
be useful to choose frontier nodes near doors. We use j = 3
and d = 2 meters in our experiments, but can be varied based
on the environment.

D. Task-relevant Visual Memory

During action-execution, images are stored in a buffer
at a specified sampling frequency to avoid multiple similar
repeated images. Images from this buffer, along with keywords
from the question/task, are then processed using SigLIP [58]
to obtain the text-image relevancy score for each image. Using
this score, only the top-K most relevant images are maintained
in the buffer and the rest are discarded. We empirically choose
K = 2; we append these K images together, along with the
agent’s current view, and use it as the visual input to the VLM
planner at the next planning step, as shown in Figure 2.
Both simulation and real-world experiments are performed
in general indoor environments which are object rich, but
not heavily cluttered. More heavily cluttered environments
may necessitate a larger visual memory size, while sparser
environments than those present in Habitat and the reported
real-world environments could leverage a visual memory size
of just a single image.
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Fig. 2. Overall GraphEQA architecture. As the agent explores the environment, it used its sensor data (RGBD images, semantic map, camera poses
and intrinsics) to construct a 3D metric-semantic hierarchical scene graph (3DSG) as well as a 2D occupancy map for frontier selection in real time. The
constructed 3DSG is enriched as discussed in Section III-C. From the set of images collected during each trajectory execution, a task-relevant subset is
selected, called the task-relevant visual memory ( Section III-D). A VLM-based planner ( Section III-E) takes as input the enriched scene graph, task-relevant
visual memory, a history of past states and actions, and the embodied question and outputs the answer, its confidence in the selected answer, and the next
step it needs to take in the environment. If the VLM agent is confident in its answer, the episode is terminated, else the proposed action is executed in the
environment and the process repeats.
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Fig. 3. VLM Planner Architecture. The Hierarchical Vision-Language
planner takes as input the question, enriched scene graph, task-relevant visual
memory, current state of the robot (position and room) and a history of past
states, actions, answers and confidence values. The planner chooses the next
<Goto_Object_node> action hierarchically by first selecting the room
node and then the object node. The <Goto_Frontier_node> action is
chosen based on the object nodes connected to the frontier via edges in the
scene graph. The planner is asked to output a brief reasoning behind choosing
each action, an answer, confidence in its answer, reasoning behind the answer
and confidence, the next action, a brief description of the scene graph, and
the visual memory.

E. Hierarchical Vision-Language Planner

Inputs: At every planning step t, the VLM planner
takes as input a multiple-choice question q, the set of
multiple-choice answers A, the enriched scene graph S

e
t ,

and the task-relevant visual memory {Ik}
K
k=1; K is the

number of images in memory. Additionally, we provide
the planner with a structured history Ht and the agent’s
current state Xt; Xt is defined in the following format: "The
agent is currently at node <agent_node_id> at
position <agent_position> in room <room_id>

<room_name>", where information in ‘<·>’ is populated
from S

e
t (see Fig. 3).

Outputs: Given the above inputs, the planner must output
an answer at 2 A for q, a boolean value ct 2 {True, False}
representing whether it is confident in answering the question,
its current numeric confidence level pc

t 2 [0, 1], and the next
action ut that the agent should take. We require the planner
to also output the reasoning behind the choice of action
and its confidence in the rationale. Finally, the planner is
required to plan the next few steps, selecting from two high-
level action types: <Goto_Object_node>(object_id)
and <Goto_Frontier_node>(frontier_id), where
object_id and frontier_id are selected from S

e
t .

Selecting an object node enables further visual examination
of relevant visited areas. Selecting a frontier node enables
visitation of unexplored areas. Finally, the planner is required
to output a brief description of the scene graph as well as a
brief description of the input images. We update the history
Ht such that Ht+1 = Xt + at + ct + pc

t + ut + Ht.

Hierarchical planner and frontier exploration: For
<Goto_Object_node>(object_id) action types, we
enforce a hierarchical planning behavior by requiring the
planner to first reason about which room to go to by
selecting a room node, then a region node (within the
selected room), and finally the object node to go to. This
planning behavior reflects the hierarchical structure of the
3DSG and forces the planner to reason about the hierarchical
semantics of the scene to explore and answer the questions.
For <Goto_Frontier_node>(frontier_id) action types,
we require the planner to provide rationale for its choice of
frontier node by referring to the object nodes connected to
the selected frontier by edges in the scene graph, enforcing
semantic reasoning in the frontier-selection process so
that chosen frontiers are task-relevant and for information-
gathering.



Termination condition: A planning episode is terminated
when the planner outputs ct = True or pc

t > 0.9, i.e., when
it is confident in answering the question. The episode is also
terminated if t > Tmax, when the maximum allowed planning
steps have been reached.

Prompt description: We provide the planner with a
system prompt detailing how to understand the scene graph
structure, and explain the criteria behind choosing the
actions—hierarchically for object nodes and task-relevant
or information-gathering for frontier nodes. We explain that
the 3DSG can be imperfect/incomplete and that the planner
should always seek visual confirmation before answering the
question with confidence while employing the scene graph
as a semantic map for examining and exploring the scene.
Finally, we prompt the VLM to provide a brief description of
the scene graph and the input images, focusing on elements in
the scene that are relevant to the current task. The complete
prompt is available in Appendix VII-D.

IV. EXPERIMENTAL SETUP

We identify the key research questions that this work aims
to evaluate: Q1) Do hierarchical 3D scene graphs provide
an effective metric-semantic memory for solving embod-
ied question answering tasks? Q2) How does the real-
time nature of GraphEQA compare to offline approaches that
provide the planner with full-state scene graphs? Specifically,
we aim to evaluate if GraphEQA can utilize incrementally
constructed state information to solve EQA tasks and terminate
based on confidence, without needing to acquire full state
information. Q3) Can GraphEQA effectively combine and
reason about the high-level, semantically-sparse and task-
agnostic information offered by scene graphs and the local,
semantically-rich and task-relevant information from visual
memory to actively take information gathering actions until it
can confidently answer an embodied question?

A. Baselines and Ablations
To evaluate our method and answer the above research

questions, we compare against several baselines and focus on
methods that employ VLM-based planners for solving EQA
or object goal navigation tasks. We compare against a strong
baseline, Explore-EQA [39], which calibrates Prismatic-VLM
[21] to answer embodied questions confidently while main-
taining a 2D semantic memory and using prompted images
to guide exploration. Note that ExploreEQA is always ex-
ecuted for a pre-specified maximum number of steps, with
the highest confidence step chosen to answer the question,
while GraphEQA terminates based on a confidence threshold.
We implement additional variants of ExploreEQA with newer
foundation models—e.g., GPT4o, Llama 4 Maverick, and
Gemini 2.5 Pro—for fair comparison with respective VLM
variants of GraphEQA.

We also compare GraphEQA against a modified version
of SayPlan [38] which we call SayPlanVision. Similar to

SayPlan, SayPlanVision first constructs a scene graph of the
whole scene offline and then uses this scene graph for plan-
ning. For fair comparison, we further augment SayPlanVision
with some abilities of GraphEQA in order to evaluate the
effectiveness of our real-time approach and to answer Q2; we
provide it with a task-relevant visual memory and confidence-
based termination. Note that the SayPlanVision ablation imple-
mented with these augmentations is equivalent to GraphEQA
with the full scene graph. However, we reserve ablations
with the name GraphEQA to refer to implementations that
incrementally construct the scene graph in real time, a core
feature of GraphEQA.

We further evaluate our method for Q3, using two ablations:
GraphEQA-SG, where the planner only has access to the
real-time 3DSG and does not have access to images; and
GraphEQA-Vis, where the planner only takes the visual
memory as input and exploration is done via random frontier-
based exploration. These ablations will help us evaluate the
benefits of multimodality in GraphEQA. Experimental Set-
tings: Since we focus on multi-room environments, we eval-
uate GraphEQA and the baselines mentioned in Section IV-A
in simulation in Habitat-Sim [46] on scenes from HM3D-
Semantics [56] on the HM-EQA and OpenEQA datasets and in
the real-world in two unique home environments. We perform
numerous experiments with different foundation models as
the VLM planner, including GPT4o, Gemini 2.5 Pro, and
Llama 4 Maverick. For the real-world setup, we deploy and
evaluate our approach on the Hello Robot Stretch RE-21 mobile
manipulation platform. All experiments are conducted on a
desktop machine with two (2) NVIDIA TITAN RTX GPUs,
64GB of RAM, and an Intel i9-10900K CPU.
Resource Allocation: The average token count is broken down
as 475 per image (3 images), 1133 for the prompt, and on
average 5,425 scene graph tokens, for a total 7983 tokens per
VLM step.
Metrics: We use the following three metrics to compare
against the baselines and ablations in Section IV-A: 1) Success
Rate (%): an episode is considered a success if the agent
answers the embodied question correctly with high confidence;
2) Average # Planning Steps: For successful episodes, we
calculate the average number of VLM planning steps. Note
that while Explore-EQA runs for a preset maximum number
of steps and post-calculates the maximum confidence step, we
report the number of steps taken until the max confidence
step; 3) Average Trajectory Length (meters): for successful
episodes, we calculate the average length of the path traveled
by the robot. For SayPlanVision, this includes the path traveled
to generate the full scene graph. Since ExploreEQA is always
executed for a pre-specified maximum number of steps for
each episode, the trajectory length used in the calculation of
the average trajectory length metric is the trajectory length up
to the step at which the maximum confidence is reported. This
ensures a fair comparison of exploration between GraphEQA

1GraphEQA leverages the open-source codebase for Hello Robot’s
stretch ai at https://github.com/hello-robot/stretch_ai



TABLE I
COMPARISON TO SIMULATION BASELINES FOR HM-EQA AND OPENEQA DATASETS: SUCCESS RATE (%), AVERAGE # OF PLANNING STEPS OVER

SUCCESSFUL TRIALS, AND L⌧ AVERAGE TRAJECTORY LENGTH OVER SUCCESSFUL TRIALS. METHODS WITH A † INDICATE OUR IMPLEMENTATIONS OF
THAT PARTICULAR BASELINE.

Method HM-EQA OpenEQA
Success Rate (%) " #Planning Steps # L⌧ (m) # Success Rate (%) " #Planning Steps # L⌧ (m) #

Explore-EQA [39] 51.7 18.7 38.1 55.3 20.8 39.7
Explore-EQA-GPT4o† 46.4 3.4 6.3 46.4 4.88 8.30
Explore-EQA-Llama4-Mav † 43.8 5.58 10.4 48.1 4.25 7.60
Explore-EQA-Gemini-2.5Pro † 54.3 6.40 12.3 53.0 6.45 10.9
SayPlanVision† 54.8 2.6 5.3 - - -
GraphEQA-GPT4o 63.5 5.1 12.6 69.1 3.97 8.29
GraphEQA-Llama4-Mav 57.7 2.36 3.59 53.3 2.37 3.45
GraphEQA-Gemini-2.5Pro 67.0 2.94 7.41 62.0 2.16 4.03

and Explore-EQA.

B. Experimental Results

1) Comparison to Baselines: Table I shows simulation
results comparing GraphEQA to the baselines discussed
in Section IV-A on the HM-EQA and OpenEQA datasets.
Overall, GraphEQA outperforms all other baselines. Compared
to Explore-EQA, our method completes tasks in significantly
fewer planning steps and with lower trajectory length, indi-
cating more efficient navigation. We also observe that the
GPT and Llama variants of Explore-EQA have lower success
rates than Explore-EQA, with qualitative results indicating
overconfidence in VLMs’ predictions (see Appendix VII-H),
leading to terminating episodes before exploring sufficiently.
We note that Explore-EQA’s Gemini variant performs better
than Explore-EQA, likely due to the inherent spatial reason-
ing capabilities of Gemini 2.5 Pro. GraphEQA outperforms
SayPlanVision even though SayPlanVision has access to the
complete scene graph. We discuss these results in more detail
below.

2) Baseline And Ablation Study: Regarding Q1, we ob-
serve from Table I that GraphEQA has higher success rate,
compared to all Explore-EQA variants, across both HM-EQA
and OpenEQA datasets, without the need to build an explicit
2D semantic task-specific memory. This demonstrates the
capability of 3DSGs to provide an effective metric-semantic
memory for EQA tasks. We also observe that GraphEQA
requires a significantly lower number of planning steps as
compared to Explore-EQA. This is because, unlike Explore-
EQA, GraphEQA does not entirely rely on images as input to
the VLM planner for building the semantic memory as well as
planning, as this would constrain the planner to choose from
only regions that are visible in the current image. GraphEQA,
on the other hand, can use the hierarchical structure of the
scene graph as well as semantically-enriched frontier nodes to
plan across the entire explored space.

Additional error analysis in Appendix VII-H reveals that
the GPT variant of Explore-EQA has a significantly high
percentage of false positives, i.e., questions that are an-
swered successfully using commonsense reasoning/guessing,
but without grounding the answer in the current scene. This

provides additional evidence of the effectiveness of 3DSGs
in enabling semantic exploration by grounding the planner in
the current environment. Qualitatively, we observe that actions
chosen by the planner, <Goto_Object_node>(object_id) and
<Goto_Frontier_node>(frontier_id), are task-specific and
explainable. For more qualitative results please refer to Ap-
pendix VII-L. We limit this error analysis to only the GPT
variant since it is performed manually by a human.

For Q2, we observe from Table I that GraphEQA performs
better than SayPlanVision which has access to the complete
scene graph. This is a surprising result since it is expected
that, given full scene graph information, SayPlanVision would
outperform GraphEQA across all metrics. However, from
a qualitative analysis of the results for SayPlanVision, we
observe that given access to the complete scene graph, the
context is too large, providing for a much harder inference
problem for the VLM. As a result, the agent is overconfident
about its choice of object node actions, leading to shorter
trajectory lengths in successful cases, but also to increased
failure cases. This points to an interesting advantage of our
real-time approach—that incrementally building memory by
exploring task-relevant regions and maintaining a more concise
representation benefits EQA tasks.

For Q3, the ablation results in Table II for GraphEQA-SG
show lower success rate, higher average planning steps, and
higher average trajectory length, compared to GraphEQA, as
it only uses the 3DSG as textual input to the VLM planner,
demonstrating that a semantic scene graph constructed using
closed-set semantics and without any task-specific seman-
tic enrichment will provide an incomplete and insufficient
environment understanding; GraphEQA’s task-relevant visual
memory and task-specific enrichment are crucial for solving
EQA tasks. Furthermore, we note that the performance of
the vision-only ablation GraphEQA-Vis also suffers: this is
because the agent takes random exploratory actions in the envi-
ronment, with no semantic understanding of the scene structure
to guide exploration. However, qualitatively we observe that
without access to a scene graph to ground the agent in the
current environment, GraphEQA-Vis exhibits overconfidence
(taking very few planning steps) and tries to answer the
question solely based on the current image. GraphEQA out-
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(b)

Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Planning step 1I will choose a frontier to explore unexplored areas.
Confident: False, Answer: 1<Goto_Frontier_node>

Planning step 1 Planning step 3 Planning step 5
I need to see the couch to count the cushions.

Confident: False, Answer: 1<Goto_Frontier_node>
Planning step 1The image clearly shows two white cushions on the 

grey couch. Confident: True, Answer: 2

Q: What is the color of the dehumidifier machine? A) Blue. B) 2. White and gray.

Planning step 1 Planning step 7 Planning step 9
Planning step 1The dehumidifier machine is not currently in the 

scene graph or visible. Exploring a frontier.
Confident: False, Answer: Blue<Goto_Frontier_node>

Planning step 1There are two white, boxy machines on the floor, 
likely dehumidifiers or air purifiers. One is gray.

Confident: True  Answer: White and gray

Planning step 1I need to find the dehumidifier to determine its 
color. I will explore a frontier.

Confident: False, Answer: Blue<Goto_Frontier_node>

Fig. 4. Images from real-world experiments, deploying GraphEQA on the Hello Robot Stretch RE2 platform in two unique home environments (a, b).
Each set of images is from the head camera on the Stretch robot, representing the top-K task-relevant images at each planning step as it constructs the scene
graph and attempts to answer the question with high confidence. Provided under the images are planning step, answers, confidence, and explanations output
from the VLM planner.

TABLE II
ABLATIONS (SIMULATION): SUCCESS RATE (%), NUMBER OF PLANNING

STEPS AND L⌧ THE TRAJECTORY LENGTH.

Ablation Succ. Rate (%) #Planning steps L⌧ (m)

GraphEQA-SG 13.6 8.8 33.0
GraphEQA-Vis 45.7 1.0 3.9
GraphEQA 63.5 5.1 12.6

performs all ablations, providing clear evidence on the utility
of a multimodal approach that combines global spatial and
semantic information from 3D scene graphs with local but rich
semantic information from images, for solving challenging
EQA tasks. We also observe from Table I that GraphEQA
exhibits lower average planning steps and lower average trajec-
tory length, while retaining a higher success rate, highlighting
the capability of GraphEQA to reason about multimodal data
in the form of semantically sparse and task-agnostic scene
graphs and more semantically rich information in the form of
task-relevant visual memory. Additional ablations are available
in Appendix VII-F.

C. Real-world Experiments
We deploy GraphEQA on the Hello Robot Stretch RE2

platform across two home and two office environments. We
conduct ten trials in Home (a) and five trials in Home (b),
as summarized in Figure 4, which illustrates representative
runs from each setting. For each environment, we design a
custom set of Embodied Question Answering (EQA) tasks (see
Appendix VII-J), aligned with the task categories described
in Appendix VII-B. To construct the underlying 3D metric-
semantic scene graph, GraphEQA employs Detic [62] for
semantic segmentation and integrates RGB-D images along
with camera intrinsics and extrinsics as input to the Hydra
scene graph generator [19]. Results for the office environments
are provided in Appendix VII-K.

V. CONCLUSION

We present GraphEQA, an approach for solving embodied
question answering tasks in unseen environments by grounding
a vision-language based planner in the context of the current
environment by providing as input textual representations of
real-time 3D metric-semantic scene graphs and a task-relevant
visual memory. We show that GraphEQA achieves improved
performance over existing approaches on EQA tasks in both
the HM-EQA and OpenEQA benchmarks, and validate per-
formance across both closed and open multimodal foundation
models. Furthermore, we validate its practical applicability
through real-world deployments in two home and two office
environments.

VI. LIMITATIONS

A limitation of this approach is reliance on off-the-shelf
segmentation and detection models for creating semantic maps
required for 3DSG construction. The performance of our
approach, hence, is directly impacted by the performance of
the detection method used and the semantic categories in the
scene graph are limited to the categories detected by the
segmentation model. An exciting direction for future work
includes enriching the scene graph online with task-relevant
node and edge features using open-set models. Another lim-
itation of our approach is that VLM-based planners can be
overconfident or underconfident when answering embodied
questions. Grounding calibrated models in real-time multi-
modal memory is another important direction for future work.
Additionally, GraphEQA is currently limited to single-floor
scenes, and is unable to traverse multiple floors or buildings.
Accommodating multi-floor scenes is within the scope of
future work.
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VII. APPENDIX

A. Habitat environment setup

The Habitat-Sim setup for our experiments is identi-
cal to the setup used in [39]. The camera sensor set-
tings are as follows: image width = 640, image height
= 480, camera height = 1.5m, camera tilt = �30 de-
grees, field of view = 120 degrees. For generating tra-
jectories for the <Goto_Object_node>(object_id) and
<Goto_Frontier_node>(frontier_id) actions, we find
the shortest path between the current agent position and
the desired object/frontier node location, on the obstacle-
free voxel space of of the 2D occupancy map. We orient
the agent such that camera always points towards the de-
sired node location all along the trajectory. In case of the
<Goto_Object_node>(object_id) action, this maximizes
the number of views that capture the target object. In case
of the <Goto_Frontier_node>(frontier_id) action, this
makes the agent look outwards into the unexplored areas.

B. HM-EQA and OpenEQA Datasets

The Habitat-Matterport Embodied Question Answering
(HM-EQA) dataset introduced by Yadev et al. [56] is based
in the Habitat-Matterport 3D Research Dataset (HM3D) of
photo-realistic, diverse indoor 3D scans [37]. The dataset is
composed of 500 multiple choice questions from 267 different
scenes which fall in the following categories: identification,
counting, existence, state, and location. The OpenEQA dateset
[30] contains data spanning the categories spatial understand-
ing, object state recognition, functional reasoning, attribute
recognition, world knowledge, object localization, and object
recognition. We use both HM-EQA and OpenEQA to bench-
mark our results against baselines in simulation.

C. Hydra 3D Scene Graphs

Hydra 3DSGs are comprised of the following layers: Layer
1 (bottom): a metric-semantic 3D mesh, Layer 2: objects
and the agent, Layer 3: regions or places, Layer 4: rooms,
and Layer 5 (top): building. Intra-layer edges between nodes
denote ‘traversability’, while inter-layer edges denote ‘belong-
ing’. For example, an edge between regions in Layer 3 denotes
traversability between these regions and an edge between an
object and a room denotes that the object is located in that
room. 3DSGs are constructed using RGB and depth images
from the robot’s camera, camera pose and camera intrinsics.
Using off-the-shelf image segmentation models [62], the ob-
ject nodes are assigned semantic object labels.

D. Prompting

1) GPT Prompt: The full prompt provided to GPT4o for
GraphEQA is given in Section VII-L2. In it we provide the
scene graph description, description of the agent’s current
state, agent prompt, and just generally more descriptive text
for more context.

2) Hierarchical Nature of 3DSGs and Planning: The por-
tion of the prompt used to describe the scene graph in
GraphEQA clarifies to the VLM how layers and nodes are
organized in a 3DSG. We take advantage of this structure by
requiring <Goto_object_node_step> to be organized such
that the VLM first chooses a room (level 4) to navigate to,
then choosing an object (level 2) in that room. This inherent
structure and explanation of it in the prompt guides the VLM
to choose actions that investigate objects that are semantically
relevant to the question.

E. Baseline Performance on Task Categories

TABLE III
SUCCESS RATE (%) IN SIMULATION FOR TASK CATEGORIES IN THE
HM-EQA DATASET, FOR IDENTIFICATION, COUNTING, EXISTENCE,

STATE, AND LOCATION CATEGORIES. REPORTED IN TERMS OF CATEGORY
SUCCESSES / TOTAL NUMBER OF CATEGORY EQA TASKS. † INDICATES

OUR IMPLEMENTATION OF THAT BASELINE.

Method Ident. Counting Existence State Location

Explore-EQA 59.2 46.2 56.5 46.5 47.7
Explore-EQA-GPT4o† 32.5 44.2 56.4 42.3 40.8
SayPlanVision† 75 44.4 63.3 43.4 56
GraphEQA 77.8 57.9 69 65.2 64

Table III shows the performance of baselines and
GraphEQA across the different task categories in the HM-
EQA dataset. GraphEQA outperforms all other methods across
all task categories, but is particularly more performant in
comparison when considering Counting and State tasks. It is
worth noting that the Counting and State categories are among
the most challenging.

F. Additional Ablations:

We perform some additional ablations to evaluate the util-
ity of different components of our method: GraphEQA-
NoEnrich, which does not use frontier enrichment (Sec-
tion III-C), and GraphEQA-CurrView, which uses only the
current view as input to the VLM and does not choose
additional task-relevant keyframes (Section III-D). All abla-
tions of GraphEQA use GPT-4o. Here we analyze these two
additional ablations, GraphEQA-NoEnrich and GraphEQA-
CurrView. We observe that GraphEQA-NoEnrich performs
slightly worse than GraphEQA which demonstrates that en-
riching the scene graph with additional semantic information
in the form of edges between frontiers and nearest objects,
as discussed in Section III-C, lends itself to semantically
informed exploration. We observe that the performance drop
is worse in the case of GraphEQA-CurrView, where we do not
use task-relevant visual memory, but only the current view of
the agent. This demonstrates that task-relevant visual memory
is very useful in long-horizon tasks where the current view
of the robot might not be the best view for answering an
embodied question.



TABLE IV
ABLATIONS (SIMULATION): SUCCESS RATE (%), NUMBER OF PLANNING

STEPS AND L⌧ THE TRAJECTORY LENGTH.

Ablation Succ. Rate (%) #Planning steps L⌧ (m)

GraphEQA-NoEnrich 59.5 5.1 11.1
GraphEQA-CurrView 53.1 5.7 12.2
GraphEQA 63.5 5.1 12.6

G. Additional Quantitative results: Zero-shot reasoning for
commonsense questions

We perform this evaluation to answer the following ques-
tion: how many questions in the HM-EQA dataset can be
answered correctly purely based on commonsense reasoning
or guessing, without exploring the environment? We aim to
perform this analysis to roughly estimate the percentage of
false positives that can occur in the HM-EQA dataset using dif-
ferent VLMs. To answer this question we define the following
three additional baselines: EQAZeroShotGPT4o, EQAZe-
roShotPrismatic and EQAZeroShotGPT4oQuestionOnly.
EQAZeroShotGPT4o evaluates the zero-shot performance of
GPT-4o when answering an EQA question using the initial
image and the question. EQAZeroShotPrismatic evaluates
the zero-shot performance of the calibrated Prismatic model
from Explore-EQA [39] when answering an EQA question
using the initial image and the question. EQAZeroShotQues-
tionOnly evaluates the zero-shot performance of GPT-4o when
answering an EQA question using only the question. In all the
above baselines, no exploration steps are taken. Prompts for
the above baselines are identical to ones used by Explore-
EQA [39]. An episode is considered a success if the question
is answered correctly and with high confidence (> 0.5).

Table V shows the simulation results for the baselines
mentioned above compared to the baselines discussed in Sec-
tion IV-A. We observe that, given only the question, EQAZe-
roShotQuestionOnly answers 6.6% of the questions correctly
with high confidence. This can be attributed to the VLM
answering questions based on commonsense reasoning or even
just random guessing, and getting them correct. EQAZe-
roShotPrismatic answers only 1.8% of the questions correctly
with a confidence > 0.5. This can be attributed to the fact that
the Prismatic VLM is calibrated to avoid overconfident behav-
ior in the absence of evidence, hence the zero-shot confidence
values are low. EQAZeroShotGPT4o answers 17.2% of the
questions correctly with high confidence. To evaluate whether
these questions were answered based on actual evidence in
the initial image or purely based on commonsense reason-
ing/guessing, we further qualitatively evaluated the successful
cases. Among the 17.2% that EQAZeroShotGPT4o answers
successfully, 8.8% were answered based on actual evidence
in the initial image. These questions could be answered using
the initial image. The remaining 8.4% were answered based on
commonsense reasoning/guessing without any evidence from
the environment. Thus, 8.4% is the rough estimate of the false
positives that can occur in the HM-EQA dataset using GPT-4o

TABLE V
ADDITIONAL BASELINES (SIMULATION): SUCCESS RATE (%)

Method Succ. Rate (%)

Explore-EQA [39] 51.7
Explore-EQA-GPT4o 46.4
SayPlanVision 54.8
GraphEQA 63.5
EQAZeroShotGPT4o 17.2
EQAZeroShotPrismatic 1.8
EQAZeroShotGPT4oQuestionOnly 6.6

based methods.

H. Error Analysis of Competing Baselines

Given the nature of the EQA tasks, it is possible that
some of the questions are answered successfully using only
commonsense reasoning/guessing, without grounding the an-
swer in the current environment. We consider these cases
as false positives. An example of a false positive is shown
in Section VII Figure 5. Furthermore, we also notice false

negatives, where the answer was marked incorrect given the
answer in the data set, although given the current image and
scene graph, the answer seemed appropriate. Such cases exist
due to ambiguities in the dataset. An example of a false
negative is shown in Figure 6. To get an estimate of the
number of false positives and false negatives in our baselines,
we uniformly sample a set of 114 questions from the HM-
EQA dataset and manually label the results across the four
categories: True Positives, True Negatives, False Positives and
False Negatives. The results are shown in Table VI where
each number is a percentage of the total number of questions
considered (114).

TABLE VI
ERROR ANALYSIS (SIMULATION): PERCENTAGE %

GraphEQA Explore-EQA Explore-EQA-GPT4o

True positive 58.18 31.58 22.81
True negative 31.82 44.74 46.49
False positive 6.36 16.67 24.56
False negative 3.64 7.02 6.14

From Table VI, we observe that GraphEQA has the least
number of false positives and false negatives, yielding more
reliable success rates. We note that Explore-EQA-GPT4o has
a considerable percentage of false positives, i.e., questions
are answered correctly based on guessing without grounding
the answer in the current environment. This sheds light on
why Explore-EQA-GPT4o has comparable success rates to
Explore-EQA-GPT4o, even with considerably fewer planning
steps (Table I).This provides further evidence that GraphEQA
effectively grounds GPT-4o in the current environment, is not
overconfident based on commonsense reasoning and explores
the environment until it can answer the question based on



evidence. See additional results in Section VII-E, categorized
by question type.

Question: Did I leave any pot on the stove?  
A. Two B. None C. Three D. One 
Answer: B 

True Positive False Positive

Fig. 5. An example of a false positive case. The image on the left is the
image that can be used to answer the question correctly. The image on the
right is the image used by an agent to ’guess’ the answer correctly with high
confidence without grounding the answer in the current environment.

Question: Which pillows are there on the bed right now?  
A. Green ones B. Black ones C. Red ones D. Purple ones 
Answer: D 

True Positive False Negative

Fig. 6. An example of a false negative case. The question inquires about
the color of the pillow on the bed. The question is ambiguous. On the left
is the image that corresponds to the answer in the dataset i.e. purple pillows.
On the right is an image that the agent encounters during exploration and
answers that the pillows are ’green’ with high confidence. Given the image,
the answer is correct but is deemed incorrect in the dataset.



I. Structured Output
We employ the structured output capabilities of OpenAI’s Python API to force a desired structure on what is output by

GPT4o. Below is the create_planner_response function used in the implementation of GraphEQA.
1 def create_planner_response(frontier_node_list, room_node_list, region_node_list, object_node_list,

Answer_options):
2

3 class Goto_frontier_node_step(BaseModel):
4 explanation_frontier: str
5 frontier_id: frontier_node_list
6

7 class Goto_object_node_step(BaseModel):
8 explanation_room: str
9 explanation_obj: str

10 room_id: room_node_list
11 object_id: object_node_list
12

13 class Answer(BaseModel):
14 explanation_ans: str
15 answer: Answer_options
16 explanation_conf: str
17 confidence_level: float
18 is_confident: bool
19

20 class PlannerResponse(BaseModel):
21 steps: List[Union[Goto_object_node_step, Goto_frontier_node_step]]
22 answer: Answer
23 image_description: str
24 scene_graph_description: str
25

26 return PlannerResponse

Code Listing 1. The create_planner_response function used to structure output from GPT4o.

The create_planner_response function takes as input enums for frontier nodes, room nodes, region nodes, object
nodes, and the answer options for the particular question being answered by the VLM. These enums are used to populate the
member variables of the Goto_frontier_node_step, Goto_object_node_step, and Answer classes, enforcing
both type as well as the options available when calling the OpenAI API.

J. Additional Real-world Experiments in Home Environments
Additional experiments for Home Environment (a) and the questions asked of GraphEQA are shown below. We provide a

sequence of ten images from the head camera on the robot to illustrate exploration and validation of GraphEQA’s answer to
the question. Each experiment for Home Environment (a) was executed twice successfully. We show a single trial from this
set for each experiment.

Home Environment (a)

Question 1: Is there a blue pan on the stove?
A. Yes
B. No
Answer: A

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Fig. 7. Home Environment (a) Question 1: Is there a blue pan on the stove? For this question, the agent takes four VLM steps in the environment,
beginning by reasoning about the current information it has access to; “I can’t answer confidently as the current view and scene graph don’t reveal a kitchen
or stove.”. The agent then takes two GotoFrontierNodeStep steps to explore, and as shown in Frame 5 (from the left) gains access to the stove via the scene
graph: “The stove is connected to region and frontier nodes, suggesting proximity.”. The agent then takes a GotoObjectNodeStep(stove) step, navigates to the
stove, and upon reaching it answers “The image shows a blue pan on the stove.”, answering with high confidence. To see the full experiment in video,
please see grapheqa.github.io.

https://grapheqa.github.io


Question 2: How many white cushions are there on the grey couch?
A. 1
B. 2
C. 3
D. 4
Answer: B

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Fig. 8. Home Environment (a) Question 2: How many white cushions are there on the grey couch? For this question, the agent takes a total of six
VLM steps, initiating its exploration by reasoning about the frontiers and objects it has access to in the scene graph; “No frontiers or objects are directly
related to locating the grey couch. I’ll choose a frontier to explore unexplored areas.”. The agent then has access to a couch (see Frame 4 from the left) and
chooses GotoObjectNodeStep(couch) for two VLM steps to search around the only couch it can see. After executing these object node steps, the agent then
has access to a secondary couch it has not explored, and so chooses GotoObjectNodeStep(couch) once more to explore the grey couch, stating “The current
view doesn’t clearly show the number of white cushions on the grey couch, so I need a closer look.” In the final VLM step the agent answers the question;
“The image shows a grey couch with two white cushions. There is also a table with various items in front of the couch.” To see the full experiment
in video, please see grapheqa.github.io.

Question 3: Where is my handbag?
A. On the coat rack
B. On the floor
C. On the couch
Answer: A

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Q: Where is my handbag? A) On the coat rack. B) On the floor. C) On the couch.

Fig. 9. Home Environment (a) Question 3: Where is my handbag? The agent takes a total of three VLM steps to determine the location of the handbag,
beginning with exploration guided by the scene graph; “The scene graph shows several frontiers connected to objects or areas, but none seem directly related
to a potential couch or coat rack. Exploration of frontiers is necessary”. After the first GotoFrontierNodeStep to explore, the agent identifies a handbag in
the environment; “Although the scene graph indicates the handbag is in the living room, further exploration is needed to confirm its position.”, but cannot
yet confirm its position among the options available to it. Finally, the agent takes a GotoObjectNodeStep to gain a better view of the handbag and its
position; “I have visual confirmation from the current image showing the handbag on the coat rack.”. To see the full experiment in video, please see
grapheqa.github.io.

Question 4: Where is the trashcan?
A. Next to the sink
B. Next to the refrigerator
Answer: A

Question 5: Is the front door next to the staircase open?
A. Yes
B. No
Answer: B

Home Environment (b)

https://grapheqa.github.io
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Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Q: Where is the trashcan? A) Next to the sink B) Next to the refrigerator

Fig. 10. Home Environment (a) Question 4: Where is the trashcan? The agent takes a total of six VLM steps to determine the location of the trashcan,
beginning with exploration guided by the scene graph; “The image and scene graph don’t provide information about a kitchen or a trashcan location. Choosing
a frontier that might lead to a kitchen.” The following four steps are GotoFrontierNodeStep actions, as the agent prioritizes exploring over investigating
specific objects in the environment; “The current scene graph shows objects like a cushion, stove, chair, table, blanket, and other kitchen-related items like
a dishwasher, hand towel, cabinet, and sink in the vicinity.” Finally, the agent visually confirms the location of the trashcan; “Given the clear visibility of
the trashcan next to the sink in Image 1, I am confident in answering with certainty.” Note that Image 1 for this experiment is the 9th image in the
sequence of ten above. To see the full experiment in video, please see grapheqa.github.io.

Q: Is the front door next to the staircase open? A) Yes. B) No.

Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Q: How many white cushions are there on the grey couch? A) 1. B) 2. C) 3. D) 4.

Q: Where is my handbag? A) On the coat rack. B) On the floor. C) On the couch.

Fig. 11. Home Environment (a) Question 5: Is the front door next to the staircase open? The agent takes a total of four VLM steps to determine
the state of the door, beginning its exploration by identifying where it is located and choosing an action appropriately; “The scene graph shows the agent’s
location in the kitchen. There aren’t any nodes indicating a door or staircase. I will explore a frontier as it could lead to a new area where the front door or
staircase might be visible”. The agent’s next two actions are GotoFrontierNodeStep actions, explaining the second of these choices as follows; “To potentially
locate the staircase, I will explore the frontier connected to a couch, which could be in the living room area.”. The agent then chooses another frontier since
“...the current view does not show much that relates directly to the front door or staircase.” Finally, along its trajectory to that frontier node, the agent identifies
relevant images to the question and answers; “The current image shows a blue couch in the center. To the left, a staircase is visible. Just beyond the
couch is a door that is closed.”. To see the full experiment in video, please see grapheqa.github.io.

Question 1: What is the color of the dehumidifier?
A. Blue
B. White and Gray
Answer: B

Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Q: Where is the trashcan? A) Next to the sink B) Next to the refrigerator

Q: What is the color of the dehumidifier? A) Blue, B)White, C) Black

Fig. 12. Home Environment (b) Question 1: What is the color of the dehumidifier? The agent takes a total of nine VLM steps to answer this question, and
starts by exploring a frontier node; “I need to find the dehumidifier machine to determine its color. It is not currently in the scene graph or visible.” The next
eight steps are chosen as frontier steps, with explanations like “The dehumidifier is not in the scene graph. I need to explore to find it. The current image shows
a potential candidate object (white appliance) near the chair (object3) and backpack (object17).” The final frontier step taken reveals the dehumidifier; “The
object potentially representing the dehumidifier (object26, labeled ’box’) is in room0. There are two white, boxy machines on the floor, likely dehumidifiers
or air purifiers. One has a gray top panel.” To see the full experiment in video, please see grapheqa.github.io.

Question 2: Is there any object on the black plastic drawer?
A. Yes
B. No
Answer: B

https://grapheqa.github.io
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Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Q: Where is the trashcan? A) Next to the sink B) Next to the refrigerator

Q: What is the color of the dehumidifier? A) Blue, B)White, C) Black

Q: Is there anything on top of the black plastic drawer? A) Yes, B) No

Fig. 13. Home Environment (b) Question 2: Is there any object on the black plastic drawer? The agent takes a total of nine VLM steps. The first
step taken is a frontier node step chosen due to its connection to a candidate object; “I need to explore the environment to find the ’black plastic drawer’
mentioned in the question, as it is not currently in the scene graph. The image shows a potential candidate object near the ’chair’ (object1). Frontier3 is
linked to the ’chair’ (object1) and appears to be in the direction of the area needing investigation based on the current view.” The following six steps are
GotoFrontierNodeStep actions with explanations similar to “This object is not currently in the scene graph or visible. Exploring a frontier might reveal new
areas and objects, potentially including the drawer.” Finally, the agent is able to visually confirm the presence of the black plastic drawer with high confidence.
To see the full experiment in video, please see grapheqa.github.io.

Question 3: What is next to the white shopping bag?
A. Stool
B. Broom
C. Dehumidifier
Answer: A

Q: Is there a blue pan on the stove? A) Yes. B) No.
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(Q1)

Q: What is next to the white shopping bag? A) Stool, B) Broom, C) Dehumidifier

Fig. 14. Home Environment (b) Question 3: What is next to the white shopping bag? The agent takes a total of four VLM steps in this experiment,
all of which are exploratory GotoFrontierNodeStep actions until the stool is identified as being next to the shopping bag.

https://grapheqa.github.io


K. Additional Real-world Experiments in Office and Workshop Environments

Additional experiments in the office environment are shown in Figure 16 and Figure 17. They include both success and
failure cases. For videos of additional experiments in the home environment, please refer to the website.

Workshop environment
GraphEQA was provided with the following multiple choice question:

Question: Where is the backpack?
A. On the chair
B. On the table
Answer: A

The agent first takes a <Goto_Object_node>(chair) step in the environment after an initial rotate-in-place mapping
operation to populate the scene graph, choosing to investigate a chair found in the environment. An explanation for this choice
is provided by the VLM: “Objects like the chair or table might have the backpack, so checking close to these areas is essential.”
The robot then begins navigating to the chair to determine if the backpack is located there. During execution of the trajectory
toward the chair, GraphEQA leverages its task-relevant visual memory to score three images encountered on its way to the
chair. These images are shown in Figure 15.

Fig. 15. Task-relevant images selected by GraphEQA for the task ”Where is the backpack?”.

After finishing the execution of this trajectory, GraphEQA answers the question with ‘On the chair’ and provides the following
explanation of its answer: “The backpack is visually confirmed to be on the chair in the current image. The presence of the
backpack on the chair makes it clear that the correct answer to the question is ’On the chair’.”

Question: Is the door to the lobby open?
A. Yes. B. No.
Answer: A

In this particular experiment, the agent takes three planning steps, two of which constitute <Goto_Object_node>(cabinet)
steps, and one <Goto_Frontier_node>(frontier_id). For the step prior to the final action during which the agent answers
the question correctly, the explanation of its current answer is “There is no direct observation of the lobby door in the current
view or the scene graph. Since I’ve previously explored without finding the door, and considering I do not have visual
confirmation, I cannot accurately determine if the door is open or closed.” after which the agent takes the frontier step to
explore, finding the lobby door and correctly answering the question.

We ask the agent a second question regarding the location of a blue water bottle, along with three multiple choice answers.

Question: Where is the blue water bottle?
A. On the table
B. On the cabinet
C. On the floor
Answer: B

After exploring the environment with one <Goto_Object_node>(cabinet) step, see Figure 4, the agent successfully finds
the water bottle and confirms its location, providing the following justification for its answer: “The image shows a cabinet

https://grapheqa.github.io/


with some objects on top, including a blue water bottle. There is also a computer monitor and various tools visible on the
countertop.”
Office environment We ask the following question in an office setting.

Question: Is my sweater on the blue couch?
A. Yes
B. No Answer. A

The agent starts by taking a <Goto_Object_node>(couch) step, to explore the blue couch. The following
VLM explanation of the object step clarifies GraphEQA is referring to the blue couch: explanation_obj=‘I
need to locate the blue couch before I can determine if the sweater is on it or not.’
object_id=<object_node_list.object_1: couch>

The low-level planner implementation on Hello Robot’s stretch does not plan the entire path to the blue couch, however,
resulting in several more <Goto_Object_node>(couch) steps before answering the question confidently after 11 steps.

Fig. 16. Additional experiments from deploying GraphEQA on the Hello Robot Stretch RE2 platform in a workshop environment (b, c, d) and in an office
(a). (c) and (d) are failure cases. Each set of images is from the head camera on the Stretch robot, and represents the top-k task-relevant images at each
planning step. Provided under the images are the answers, confidence levels, and explanations output from the VLM planner.

1) Additional Real-world Experiments in an Office Environment:

L. Qualitative results
1) Exploration Efficiency and Trajectory Generation: We illustrate the differences in exploration between GraphEQA and

Explore-EQA through the following example. Figure 18(a) shows the trajectory taken by an agent employing Explore-EQA
in a scene in the HM3D dataset taking 30 VLM steps, while Figure 18(b) shows the trajectory taken by an agent employing
GraphEQA in that same scene taking a total of 5 VLM steps. We highlight here how Explore-EQA not only takes more steps,
but that steps are often guided only by the semantic map constructed by images, leading to more exploration, while GraphEQA
takes more structured steps in its environment, guided by the scene graph, to answer the question.

2) Choosing object-nodes and frontiers semantically: In VII-L2 we provide a qualitative examples of GraphEQA planner
choosing to go near a ’couch’ to better answer a question about living room lights. This shows that the planner chooses task-
relevant objects to guide exploration. In VII-L2 we provide a qualitative examples of GraphEQA planner choosing task-relevant
frontier nodes and object nodes to guide exploration.



Fig. 17. Additional experiments from deploying GraphEQA on the Hello Robot Stretch RE2 platform in an office environment (e, f). (e) is a failure case.
Each set of images is from the head camera on the Stretch robot, and represents the top-k task-relevant images at each planning step. Provided under the
images are the answers, confidence levels, and explanations output from the VLM planner.

QUALITATIVE RESULTS - CHOOSING TASK-RELEVANT OBJECT NODES

Question:: Is the living room light on?
A. (Do not choose this option)
B. (Do not choose this option)
C. No
D. Yes.
Answer: D
At t=0::
Agent state: The agent is currently at node agent1 at position [-2.928846836090088,
-1.5354466438293457, 4.291640281677246] at room node: room0 with name living room
Action: explanation room=I need to further investigate the living room to possibly find indicators like
light switches or bulbs. explanation obj=Going near the blue couch might provide a better view of the
surroundings, including light fixtures. room id=room 0: ’living room’ object id=object 13: ’couch’
Answer: explanation ans= I need to explore more areas related to lighting in the living room before
answering confidently. answer=Answer options A: ’(Do not choose this option)’ explanation conf=’The
scene graph and current image do not provide enough information on lighting. Going near specific
objects like the couch could help.’ confidence level=0.2 is confident=False
At t=1::
Agent state: The agent is currently at node agent7 at position [-2.2595670223236084,
-2.6618852615356445, 4.291640281677246] at room node: room 0 with name living room
Answer: explanation ans=’The image clearly shows a light fixture on the ceiling that appears to be on.
This indicates that the living room light is indeed on.’ answer=D ’Yes’ explanation conf=’The light
fixture being on is visible in the image, providing clear evidence that the living room light is on.’
confidence level=0.9 is confident=True

Qualitative example of GraphEQA planner choosing task-relevant object nodes for exploration.
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(b)

Fig. 18. (a) A top down view of the map constructed by Explore-EQA illustrating explored areas for a scene in the HM3D dataset. The agent’s initial
position is depicted in green and its final position in red. The trajectory of the agent is shown in black. (b) A top down view of scene reconstruction output
by Hydra as GraphEQA explores the same HM3D scene used in the Explore-EQA map to the left. The agent’s initial position is again in green and its final
position in red. The agent’s trajectory is shown in blue in this image. In this figure, we want to bring attention to the contrast between a typical trajectory
taken by an agent employing GraphEQA vs. a typical trajectory taken by an agent employing Explore-EQA.

QUALITATIVE RESULTS - CHOOSING TASK-RELEVANT FRONTIER NODES

Question:: Is the kitchen sink currently free of dishes?
A. (Do not choose this option)
B. (Do not choose this option)
C. Yes, it’s empty
D. No, there are dishes.
Answer: C
At t=0::
Agent state: The agent is currently at node agent 1 at position [0.9115259647369385,
-0.7087370157241821, -1.5000251531600952] at room node: room 0 with name bedroom
Action: explanation frontier="The kitchen typically contains objects like chairs, tables, etc.
Frontier 4 is near objects that could indicate a transition to a dining or kitchen area, as it is
near the couch and chair, which might lead to a kitchen. It’s worth exploring this frontier to find
the kitchen." frontier id= frontier 4
Answer: explanation ans="Currently, the kitchen is not visible in the scene. The scene graph and
current image provide information about a bedroom, but not a kitchen. Therefore, I can’t answer
whether the kitchen sink is free of dishes." answer= A: ’(Do not choose this option)’ explanation
conf="I haven’t yet gathered any information on the kitchen or the sink from my current location in
the bedroom, and no other regions of the building have been explored yet." confidence level=0.0 is
confident=False
At t=1::
Agent state: The agent is currently at node agent 6 at position [2.5569498538970947,
2.228832721710205, -1.5000251531600952] at room node: room 0 with name living room
Action: explanation frontier="The frontier 2 is connected to objects like the table, cabinet, fridge,
and plates, which might lead to a kitchen area or provide a clue to the sink’s status." frontier
id=frontier 2
Answer: explanation ans=’Currently, there is no visual confirmation of a sink in the image or scene
graph, and insufficient detail to determine if the kitchen sink is free of dishes.’ answer=A: ’(Do
not choose this option)’ explanation conf="The scene graph and current image give no direct view of a
kitchen sink or its status, so it’s uncertain whether it’s free of dishes." confidence level=0.2 is
confident=False
At t=2::
Agent state: The agent is currently at node agent 11 at position [2.6420648097991943,
-0.10468387603759766, -1.5000251531600952] at room node: room 0 with name living room
Action: explanation room=’To determine if the kitchen sink is free of dishes, I need to transition
from the living room to the kitchen area, where the sink is likely located. Frontiers associated
with kitchen-related objects can guide me there.’ explanation obj="To check the sink, moving towards
the ’plates’ near object 41 might lead to the kitchen area." room id=room 0: ’living room’ object

id=object 41: ’plates’
Answer: explanation ans="Currently, I don’t have enough information to directly answer if the kitchen
sink is free of dishes, based on the image or scene graph. Further exploration is needed to confirm
the state of the sink." answer=A: ’(Do not choose this option)’ explanation conf="Given my current
location and the items visible, I can’t see the sink or its contents. I need to navigate closer
to where I suspect the sink might be, based on kitchen-related objects like plates." confidence
level=0.3 is confident=False
At t=3::
Agent state:The agent is currently at node agent 21 at position [1.7573769092559814,
-0.35986196994781494, -1.5000251531600952] at room node: room 0 with name living room
Answer: explanation ans=’The image shows the kitchen, and the sink area is visible. There are no
dishes in the sink, indicating it is empty.’ answer=C: "Yes, it’s empty" explanation conf=’The image
clearly shows the sink, and there are no dishes visible, providing clear evidence to confidently
answer the question.’ confidence level=1.0 is confident=True

Qualitative example of GraphEQA planner choosing task-relevant frontier and object nodes for exploration.



FULL VLM PROMPT

Agent prompt: You are an excellent hierarchical graph planning agent. Your goal is to navigate an
unseen environment to confidently answer a multiple-choice question about the environment. As you
explore the environment, your sensors are building a scene graph representation (in json format) and
you have access to that scene graph.
Scene graph description: A scene graph represents an indoor environment in a hierarchical tree
structure consisting of nodes and edges/links. There are six types of nodes: building, rooms, visited
areas, frontiers, objects, and agent in the environment. The tree structure is as follows: At the
highest level 5 is a ’building’ node. At level 4 are room nodes. There are links connecting the
building node to each room node. At the lower level 3, are region and frontier nodes. ’region’ node
represent region of room that is already explored. Frontier nodes represent areas that are at the
boundary of visited and unexplored areas. There are links from room nodes to corresponding region and
frontier nodes depicted which room they are located in. At the lowest level 2 are object nodes and
agent nodes. There is an edge from region node to each object node depicting which visited area of
which room the object is located in. There are also links between frontier nodes and objects nodes,
depicting the objects in the vicinity of a frontier node. Finally the agent node is where you are
located in the environment. There is an edge between a region node and the agent node, depicting
which visited area of which room the agent is located in.
Current state description: CURRENT STATE will give you the exact location of the agent in the scene
graph by giving you the agent node id, location, room_id and room name.
General Description: Given the current state information, try to answer the question. Explain the
reasoning for selecting the answer. Finally, report whether you are confident in answering the
question. Explain the reasoning behind the confidence level of your answer. Rate your level of
confidence. Provide a value between 0 and 1; 0 for not confident at all and 1 for absolutely certain.
Do not use just commonsense knowledge to decide confidence. Choose TRUE, if you have explored enough
and are certain about answering the question correctly and no further exploration will help you
answer the question better. Choose ’FALSE’, if you are uncertain of the answer and should explore
more to ground your answer in the current environment. Clarification: This is not your confidence in
choosing the next action, but your confidence in answering the question correctly. If you are unable
to answer the question with high confidence, and need more information to answer the question, then
you can take two kinds of steps in the environment: Goto_object_node_step or Goto_frontier_node_step
You also have to choose the next action, one which will enable you to answer the question better.
Goto_object_node_step: Navigates near a certain object in the scene graph. Choose this action to
get a good view of the region around this object, if you think going near this object will help
you answer the question better. Important to note, the scene contains incomplete information about
the environment (objects maybe missing, relationships might be unclear), so it is useful to go near
relevant objects to get a better view to answer the question. Use a scene graph as an imperfect
guide to lead you to relevant regions to inspect. Choose the object in a hierarchical manner by first
reasoning about which room you should goto to best answer the question, and then choose the specific
object. Goto_frontier_node_step: If you think that using action ‘‘Goto_object_node_step’’ is not
useful, in other words, if you think that going near any of the object nodes in the current scene
graph will not provide you with any useful information to answer the question better, then choose
this action. This action will navigate you to a frontier (unexplored) region of the environment and
will provide you information about new objects/rooms not yet in the scene graph. It will expand the
scene graph. Choose this frontier based on the objects connected this frontier, in other words, Goto
the frontier near which you see objects that are useful for answering the question or seem useful as
a good exploration direction. Explain reasoning for choosing this frontier, by listing the list of
objects (<id> and <name>) connected to this frontier node via a link (refer to scene graph).
While choosing either of the above actions, play close attention to ’HISTORY’ especially the previous
’Action’s to see if you have taken the same action at previous time steps. Avoid taking the same
actions you have taken before. Describe the CURRENT IMAGE. Pay special attention to features that can
help answer the question or select future actions. Describe the SCENE GRAPH. Pay special attention to
features that can help answer the question or select future actions.’’

Prompt 1: The prompt used in the implementation of GraphEQA.
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