
VERDI: VLM-Embedded Reasoning
for Autonomous Driving

Bowen Feng*†, Zhiting Mei*†, Baiang Li†, Julian Ost†, Roger Girgis‡, Anirudha Majumdar†, Felix Heide†‡
†Princeton University ‡Torc Robotics

verdi-driving.github.io

Abstract—While autonomous driving (AD) stacks struggle

with decision making under partial observability and real-world

complexity, human drivers are capable of commonsense reasoning

to make near-optimal decisions with limited information. Recent

work has attempted to leverage finetuned Vision-Language Models

(VLMs) for trajectory planning at inference time to emulate

human behavior. Despite their success in benchmark evaluations,

these methods are often impractical to deploy (a 70B parameter

VLM inference at merely 8 tokens per second requires more

than 160G of memory), and their monolithic network structure

prohibits safety decomposition. To bridge this gap, we propose

VLM-Embedded Reasoning for autonomous DrIving (VERDI),

a training-time framework that distills the reasoning process and

commonsense knowledge of VLMs into the AD stack. VERDI

augments modular differentiable end-to-end (e2e) AD models by

aligning intermediate module outputs at the perception, prediction,

and planning stages with text features explaining the driving

reasoning process produced by VLMs. By encouraging alignment

in latent space, VERDI enables the modular AD stack to

internalize structured reasoning, without incurring the inference-

time costs of large VLMs. We demonstrate the effectiveness

of our method on the NuScenes dataset and find that VERDI

outperforms existing e2e methods that do not embed reasoning

by 10% in `2 distance, while maintaining high inference speed.

I. INTRODUCTION

Real-world autonomous vehicle deployments have drastically
increased in the last three years [1]–[7]. However, a major
bottleneck to achieving safe and reliable driving arises from
the complexity of real-world environments. Dynamic agents,
including pedestrians, cyclists, and human-driven vehicles,
along with their interactions, present significant challenges for
autonomous vehicles to perceive, predict, and plan. Decision-
making under semantic ambiguity, partial observability, and
unforeseen so-called edge case scenarios remain a critical
challenge for autonomous systems [8].

Highly performant autonomous driving (AD) stacks rely on
modularized differentiable end-to-end (e2e) architectures [9]–
[12]. Although existing methods are successful in benchmark
evaluations, they are often limited to the training datasets
consisting of human driving trajectories that lack access to
the underlying reasoning processes of the driver [13], [14].
As such, conventional supervised e2e models lack semantic
understanding of the driving process, which hinders their real-
world applications in unseen scenarios [15]. On the other
hand, human drivers respond to challenging decisions and
navigate through ambiguities by interpreting visual context and

1* indicates equal contribution.

reasoning. In addition, they leverage commonsense knowledge
and prior experience to make satisfactory decisions even
with incomplete information [16], [17]. This motivates the
research question: How can modular autonomous driving
models leverage human-like decision-making processes with
reasoning and commonsense knowledge when confronted with
real-time challenging driving scenarios on the road?

To enable reasoning for AD, a growing body of work inves-
tigates Vision-Language Models (VLMs) in driving tasks [18]–
[24]. Specifically, researchers have augmented AD datasets
with VLM annotations to incorporate scene descriptions and
explanations [23]–[25], questions and answers [20], [22], and
driving rationales [15], [19], [23]. The augmented datasets
are then used to train or fine-tune VLMs to be multi-modal
foundation models that are capable of generating future
behaviors for autonomous vehicles, along with natural language
explanations for interpretability. However, these works query
fine-tuned multi-modal VLMs during inference time, which
could take up to a few seconds. For example, on an OrinX chip,
a 4B Qwen model can decode a 1,078-token prompt at 44.5
tokens per second [25]. This latency renders them impractical
for real-world [15], safety-critical scenarios, or necessitates
circumventions such as hierarchical planning and control, using
small VLMs, or optimizing the model [25]. Further, many
existing VLM methods forgo multi-modal perception and
prediction modules and directly output actions from input
queries, making safety decomposition a challenge and allows
for more VLM hallucinations at inference time, which we
illustrate more in Appendix A.

We introduce VLM-Embedded Reasoning for autonomous
DrIving (VERDI) as an approach for distilling latent reasoning
capabilities from VLMs. Figure 1 provides an overview of
VERDI. During training, the method operates on two parallel
models for a given trajectory: (1) a differentiable e2e driving
model that processes current ego state and corresponding sensor
inputs (multi-view images) to generate future trajectories, and
(2) a latent reasoning pipeline that extracts the reasoning
process of the ground-truth future trajectory by querying a
VLM. The driving pipeline sequentially handles perception,
prediction, and planning subtasks through the differentiable
modules. In this work, we build upon VAD [10] to create our
e2e driving pipeline. The reasoning model prompts the VLM
using chain-of-thought [26], in the same subtask sequence. To
distill the reasoning capabilities and commonsense knowledge
from VLMs to the driving model, VERDI performs latent

https://verdi-driving.github.io

VLM

GT Trajectory

VLM

Predicted Trajectory

PlanningPredictionPerception

What did you see? What did other agents do? What did you do?

� lane, green trash-can,
left-front, white truck, left-front,
open truck, left, blue-barrier, left

White truck moved forward,
open truck remained stationary,
person walked across road

Move slowly,
turn left slightly,
maintain speed

End-to-End Model

VLM Reasoning

Alignment

Fig. 1: Overview of VERDI. Our pipeline aligns the VLM reasoning module with the e2e driving model. During training,
the ground truth (GT) trajectory and observed images are provided to the VLM for it to explain the reasoning throughout
perception, prediction, and planning during the driving process. The VLM answers to each submodule is aligned with the
corresponding submodule outputs from the e2e driving model, effectively distilling VLM knowledge and reasoning into the e2e
model. During inference time, the e2e model plans future trajectory with embedded reasoning process, without having to query
the VLM (pink arrow).

feature alignment between the driving and reasoning pipelines.
This alignment process aims to match the driving model
latent embeddings with the embeddings of the reasoning
process, facilitating the transfer of semantic reasoning from
large VLMs to real-time driving model. During inference, the
reasoning pipeline is no longer required, since it has been
effectively distilled into the driving pipeline. This enables
VERDI to perform real-time inference while preserving human-
like reasoning abilities. Our main contributions are three-
fold: (1) we develop a modular, differentiable, end-to-end
autonomous driving (AD) model featuring latent cognitive
planning, (2) we introduce a method to align individual driving
subtasks with corresponding natural language in the latent space,
and (3) we evaluate our framework on the nuScenes dataset [13]
and see 10% improvement in `2 distance over baseline methods;
further, we confirm that our model has successfully distilled
VLM reasoning processes in each submodule, and elicits
qualitative improvements in driving behavior.

II. RELATED WORK

Modularized End to End Autonomous Driving. Although
autonomous driving stacks were built modular for a long time,
end-to-end optimization is a novel problem [27], [28]. These
emerging approaches minimize information loss incurred in
independently optimized modules, where errors accumulate
and compound throughout the perception, prediction, and
planning processes. However, attempts to condense the driving

task into single monolithic perception to planning end-to-end
models lack the level of interpretability and generalizability
desired by AD applications, leading to the rise of jointly
trainable end-to-end frameworks with intermediate outputs [10],
[11], [29], [30]. Driving innovations arise from advances in
perception [31], [32], prediction [33], [34], and planning [35],
[36] modules, while differentiable losses spanning the entire
pipeline, exemplified by UniAD [9] and SY-P3 [37], serve
to connect and unify these components. Improvements in the
representation space covering vectorized encoding strategies
in VAD [10], [11], splitting dynamic and static environments
[38], parallelization [39] and inter modular dependencies as the
ego-status [12] have further enhanced performance. However,
these models primarily rely on supervised learning from
human driving demonstration datasets [13], lacking human
reasoning capabilities significantly restricts their effectiveness
in challenging driving scenarios.

Vision Language Models (VLMs) in Autonomous Driving

are of great interest as they provide advanced reasoning capa-
bilities, and rich semantic scene understandings. Specifically,
methods such as DriveGPT4 [21], OmniDrive [22], Driving
with LLM [20], DriveMLM [23], [24] enrich existing datasets
with fine-grained annotations and fine-tune or train VLMs to
reason about the scene through textual responses and predict
higher-order actions. EMMA [15] pushes this further by a full
integration of perception, road graphs, and control trajectories

2

in an end-to-end fashion, achieving state-of-the art performance.
However, large VLMs cause slow inference and deployment
hurdles, forcing compromises, e.g. restricting them to low-
frequency planning while an end-to-end model handles high-
frequency controls or capping the size below 4B parame-
ters [25], which degrades overall performance. Recent approach
VLP [40] uses VLMs during training time only focusing on
contrastive alignment between perception representations and
language embeddings. In contrast, VERDI exploits the full
language reasoning process across perception, prediction, and
planning, and aligns it with the corresponding e2e module.
Our approach VERDI harnesses language reasoning across
perception, prediction, and planning, directly integrating it into
the e2e pipeline, and does not require a VLM at runtime.

Knowledge Distillation, Representation Learning and

Alignment. Knowledge distillation compresses and accelerates
models by training a smaller “student” to mimic a larger
“teacher,” and has become essential as deep learning models
continue to grow in size [41], [42]. In the era of large
language models, it is particularly critical for transferring
knowledge to more compact architectures and for boosting
overall performance [43]. Our approach can be seen as a
specialized form of distillation: rather than having a student
network emulate the VLM’s outputs directly, we train our
modular end-to-end network to replicate the VLM’s internal
reasoning processes. This multi-modal aligned representation
learning draws insight from contrastive learning [44], [45] and
embedding space supervision [46]. Recently [47] has explored
leveraging these pretrained embeddings by aligning them with
learned modules for downstream control tasks, such as active
exploration. Our method combines knowledge distillation with
cross-modal alignment, embedding VLM reasoning into the
driving model by aligning its textual and driving feature
representations.

III. VLM-EMBEDDED REASONING

A. Problem Formulation
We cast the autonomous driving problem as future trajectory

planning. Let st = [x, y, z, vx, vy, vz]t be the ego agent state
at time step t. The history trajectory of the past T time steps
is denoted as ⌧�T :0 := {s�T , ..., s0}, and the future trajectory
with a planning horizon H is denoted ⌧0:H := {s0, ..., sH}.
We have image observations at each time step t, denoted ot.
We aim to learn an end-to-end model P✓, that plans future
trajectories given only sequential observations:

⌧̂0:H ⇠ P✓(⌧0:H |o�T :0), (1)

where ✓ represents learnable weights of the model. As
shown in Figure 1, our training pipeline focuses on the
alignment of two modules: the VLM reasoning module,
which we denote M, and the e2e driving model, which
we denote P . Further, we assume that the modular e2e
model can be broken down into three submodules Pi

✓
, where

i 2 {perception,prediction,planning}. In addition
to the standard losses for AD (e.g., `2 distance), we add a
training objective to minimize the difference between all VLM

reasoning steps and the intermediate e2e submodules. Our key
idea is to accomplish this by aligning the text features from
the VLM reasoning module, fM, with the driving features
from the e2e model, fP , through a similarity loss in the overall
loss function, which we describe in Section III-C. We detail
how we obtain language embeddings in Section III-B, how we
augment the e2e model by alignment with VLM embeddings
in Section III-C.

B. Obtaining Language Embeddings
In this section, we describe how we acquire language features

fM from the VLM reasoning module M. This module consists
of two steps: (1) querying the VLM to obtain text responses,
and (2) mapping the text response to latent features. Figure 2
outlines the VLM reasoning module.

Prompting Strategy. Following the modular e2e architecture,
we prompt the VLM to reason about the perception, prediction,
and planning steps in a chain-of-thought fashion [26]. We
first guide the VLM with some system prompt to ensure its
responses are concise and relevant. For perception, the VLM
is asked to explain the past trajectory. It is given multi-view
images captured from six cameras at timesteps t = �T and
t = 0, as well as the past ego trajectory ⌧�T :0. The VLM
is then asked to identify the number of lanes in the scene,
any agents or notable objects present, as well as their relative
locations. To prevent spatial confusion and redundancy, the
VLM is asked to label the agents and objects from left to
right and from front to back. For prediction and planning, the
VLM is asked to explain the future trajectory. In both queries,
it is given the future front images at t = 0 and t = H , as
well as the future trajectory ⌧0:H . For prediction, the answer
from perception is provided and the VLM is asked to describe
other agents’ actions in the same order they were listed. The
planning query in addition takes the prediction answers, and
asks the VLM to describe what actions the ego agent took.
The full prompt is listed in Appendix B-A.

Encoding VLM Responses. We then map the answer for
each module to latent feature space, using a text encoder. The
text encoder is able to map natural language to semantically
meaningful sentence embeddings [48]. This encoding process
reduces the dimensionality of the text, makes it machine inter-
pretable and allows for alignment while preserving semantic
meaning. The encoded text results in a feature vector f i

M for
each module i.

C. Obtaining Driving Model Alignment with VLM Reasoning
To obtain driving features f

i

P for each module i of the
e2e model, we project its output features Fi = Pi

✓
(·) into the

shared latent space with f
i

M via a learnable Progressive Feature
Projector (PFP) �i, producing the e2e feature f

i

P = PFP�i (Fi)
(more details in Appendix B-B). Figure 3 shows the training
architecture that aligns the e2e model and VLM reasoning.

VLM-Distilled Scene Understanding. To enhance the
precision of the Bird’s Eye View (BEV) map’s representation
of the driving scene, we find it essential to extract high-quality
visual features Fperception. Vision-Language Models (VLMs),

3

En
co
de
r

� lane, green trash-can, left-front,
white truck, left-front, open truck,
left, blue-barrier, left

White truck moved forward,
open truck remained stationary,
person walked across road

Move slowly,
turn left slightly,
maintain speed

What do you see in the scene?
List number of lanes and agents (if any). List them
from left to right and front to back. Add one
descriptive word for each object, e.g. red car.

What actions did other agents take?
Describe in the same order they were listed.

� lane, green trash-can, left-front, white truck,
left-front, open truck, left, blue-barrier, left

White truck moved forward, open truck
remained stationary, person walked across road

What actions did you take? Please list all the actions
taken chosen from the list: {go straight, speed up,
maintain speed, ..., turn left, turn on blinker, ...}.

� lane, green trash-can, left-front, white truck,
left-front, open truck, left, blue-barrier, left

System prompt

You are an expert driver. Now, you are annotating
trajectories with your reasoning process

Fig. 2: Obtaining description features through chain-of-thought prompting and text encoder. For each query, the prompt consists
of the system prompt, the observed images, the ego vehicle trajectory, the respective question, as well as the answers to the
upstream modules (if any). The VLM answers to each module are encoded and mapped to a latent feature space.

trained on large-scale internet image-text pairs, possess strong
capabilities in identifying object classes, road markings, and
spatial relationships with respect to the ego vehicle. Our goal
is to distill this semantic understanding from the VLM into
the image features Fperception encoded by the image feature
encoder, as presented in Figure 3. The features are then
processed by the BEV Encoder to produce a refined BEV
representation. To achieve alignment, we project Fperception
to f

perception
P in the shared latent space with PFPperception

�
,

which consists of a combination of CNN and MLP layers(See
Appendix B-C for details). The perception driving features are
then ready to be aligned with VLM reasoning features.

VLM-Distilled Agents Prediction. Next, the end-to-end
prediction module forecasts the next H timesteps from the
BEV feature map Fbev. In Figure 3, Fbev is decoded into
agent and map queries, Qagents and Qmap, which presents a
common architecture among e2e models [10], [11], [30]. These
two separate feature maps are then concatenated to form the
unified prediction query

Qpredict =
⇥
Qagents; Qmap

⇤
,

where [· ; ·] denotes channel-wise concatenation. Here,
Qagents encodes agent-agent relative positions and Qmap

encodes agent-map spatial relations.
To imbue the prediction module with the VLM’s rea-

soning ability, we distill the VLM’s reasoning ability by
aligning VLM’s prediction f

prediction
M and f

prediction
P , which

we obtain by projecting Qpredict through an MLP-based
PFPprediction

�
.

VLM Distilled Ego Planning. We feed the combined query

Qpredict, which integrates both other agents’ future trajectories
and spatial map context, into the planning module Pplanning.
Conditioned on Qpredict, the planner produces the latent ego
feature Qego as:

Qego = Pplanning
✓

(⌧0:H |Qpredict). (2)

We project Qego onto the latent space with an MLP based
PFPplanning

�
, before passing it into the last-layer decoder.

This allows us to enrich Qego with VLM reasoning by
aligning VLM’s fplanningM with the latent e2e planning features
f
planning
P .

Alignment Loss We use cosine similarity to represent the
feature alignment loss Lf (fP , fM) between the e2e features
and the language features,

Lf (fP , fM) =
fP · fM

kfPkkfMk , with a total loss

(3)

Li = Le(✓i)+�iLf (f
i

P , f
i

M),
(4)

where Le(✓i) represents the supervised loss function with the
original ground-truth data according to [10] and � is a weight
hyperparameter balancing the two contributions.

IV. EXPERIMENTS

We confirm the efficacy of VERDI through a series of exper-
iments, comparing against baseline approaches in Section IV-A,
and validate all design choices with ablation experiments in
Section IV-C.

Baseline Approaches. We compare our method to two main
categories of baselines: (1) e2e methods that directly train a

4

BEV
Encoder

Image
Feature
Extractor

Agent
Decoder

Map
Decoder

Planning
Module

Text input from VLMImage input to VLM

Fig. 3: VERDI Training. The e2e model is trained with VERDI for the individual perception, prediction, and planning
modules. All relevant feature maps F and Q are first mapped to a feature fP in a representation space, which is shared with
the encoded language features fM. This mapping is facilitated by VERDI’s trainable PFP layers. The perception outputs
Fperception including the extracted image features, are directly supervised with the encoded VLM features. In the subsequent
modules, all features are supervised. Lf computes their similarity.

TABLE I: Evaluation on the nuScenes dataset [13]. Methods are compared according to: (1) Whether a VLM is required at
inference; (2) Inference speed (FPS); (3) Trajectory accuracy, measured as the `2 distance to the expert trajectory at 1s, 2s, and
3s horizon; and (4) Whether precise historical ego-vehicle state is used in planning. In a fair co10mparison with methods not
having privileged access to ego status, including location, VERDI achieves the best performance across all metrics.

Method Requires VLM
@ Inference FPS " l2 (1s) # l2 (2s) # l2 (3s) # l2 (avg.) # Ego Status

DriveVLM [25] X 2.43 0.18 0.34 0.68 0.40 X
OpenEMMA [19] X NA 1.45 3.21 3.76 2.81 X
OmniDrive [22] X 0.44 1.15 1.96 2.84 1.98 -
UniAD [30] - 1.8 0.48 0.96 1.05 0.83 -
VAD-Base [10] - 4.5 0.41 0.70 1.05 0.72 -
VERDI - 4.5 0.36 0.62 0.96 0.65 -

modular differentiable network for future trajectory planning,
(2) methods that train or finetune a VLM to infer future actions
or control signals. We implement our method building on the
e2e model VAD-Base [10], making it a direct baseline. We also
compare against UniAD [9] , a representative state-of-the-art
e2e method. For VLM-based methods, we compare against
DriveVLM [25], which generates chain-of-thought reasoning
and hierarchical plans using a VLM, OmniDrive [22], which
aligns 3D BEV features with counterfactual scene reasoning
via a fine-tuned VLM, and OpenEMMA [19], an open-source
implementation of Waymo’s EMMA, predicting full planner
trajectories using a fine-tuned VLM.

Dataset and Metrics. We conduct experiments on the
nuScenes dataset [13], which contains approximately 1000
driving scenes, each about 20 seconds long. The dataset
includes 6 camera views, and provides annotated keyframes
at 2Hz. For planning evaluation, we follow the standard open-
loop protocol [30]: given 2 seconds of past observations, the
model predicts the vehicle’s trajectory over the next 3 seconds.
Performance is measured using `2 displacement errors at 1, 2,
and 3-second horizons. We also compare inference speed in

frames per second (FPS) for applicable methods.
Implementation Details. Training was conducted for 60

epochs on 10 NVIDIA A6000 GPUs with a batch size of 2 using
the AdamW optimizer. Inference was done on a single NVIDIA
A6000 GPU for all models. All other training configurations
maintain the settings adopted from VAD [10]. For VLM
language embeddings, we use Qwen-2.5-VL-72B [49] to
annotate every trajectory in the training dataset. We use
the chain-of-thought prompting strategy described in Sec-
tion III-B to generate text outputs from multi-view images
and states, and map the text onto embedding space using
the all-mpnet-base-v2 sentence-transformers model [48],
[50].

A. Quantitative Assessment

Table I summarizes our quantitative experimental findings.
Note that we separately evaluate methods that condition
trajectory planning on history ego status – privileged infor-
mation that typically perform better [12] – and real-time
deployable methods that do not have access to the precise ego
status. Among baselines that do not use ego status, VERDI

5

VLM Perception: 1 lane, black car, front, two pedestrians, left-front, green barrier, left-front, white building, behind, gray wall, behind.

Supervised e2e fails to detect the black car in the front view marked by the red frame both in BEV and front view. VERDI successfully detects the black car in the front view, marked by a green box in both BEV and front view.

VLM Planning: Maintain speed, go straight

VERDI successfully plan a straight path with the guidance of the VLM Planning in both BEV and front image.

Pe
rc

ep
tio

n
Supervised e2e (VAD-Base [10])

Pl
an

ni
ng

VERDI

Supversied e2e fails to plan a straight path, marked by red frame in both BEV and front view.

VLM Prediction: Yellow car moved forward, parked car remained stationary, white building remained stationary, green trees remained stationary.

VERDI accurately predicts the yellow car’s forward path, and that cars in the right and back view will stay stationary.

Pr
ed

ic
tio

n

Supervised e2e fails to predict future trajectrories for all cars, suggesting backward, forward and left movement.

Fig. 4: Qualitative comparison of VERDI (Ours, right column) and the Supervised e2e model (baseline, left column) on the
nuScenes dataset [13]. Each entry shows the multi-view camera observations on the left and the BEV view on the right at one
time step t. The left panel overlays the ego agent’s planned 3-second trajectory on the front-camera image and BEV panel
as a solid green line that fades to blue. The BEV panel renders the ego vehicle as a green rectangle, pedestrians and other
vehicles as red rectangles, and their predicted 3-second trajectories as red lines. Each of the example shows our successful
performance on the perception, prediction, and planning modules, indicated by ⇤, while failures are highlighted by ⇤. We also
show the VLM text response for each testing case to demonstrate that VERDI has successfully distilled VLM’s reasoning and
commonsense knowledge.

achieves the lowest average `2 distance to the expert trajectory
(0.65)—an 10% improvement over our direct baseline, VAD-
Base. While DriveVLM—leveraging ego status—attains a lower
`2 distance, VERDI runs ⇠ 1.9 times faster. Compared to
baseline methods that report inference speed (e.g., 2.44 FPS
for DriveVLM [25], 0.44 FPS for OmniDrive implemented with
Pytorch [22]). According to Paden et al [51], inference rates of
10 FPS or higher are considered “real-time” without additional
optimization. Our model, which currently runs at 4.5 FPS
on target hardware, will therefore require further engineering
(e.g., pruning, quantization, or custom acceleration) to meet
on-road deployment requirements—though reaching real-time
performance remains a feasible goal. Overall, VERDI offers the
best trade-off between inference speed and trajectory accuracy
among methods without ego status.

B. Qualitative Assessment
We present qualitative comparisons between the Supervised

e2e (VAD-Base) (left column) and VERDI(right column) in
Figure 4. Our approach yields better perception results: for
example, in the top row, the supervised e2e detects only the
pedestrians with red sparkle sign and fails to localize the
front-left vehicle in the BEV view ⇤, whereas our model
correctly identifies both the pedestrians and that vehicle ⇤.
Detecting this vehicle is critical as omitting it could lead
to a cross-traffic collision. VERDI also has more accurate

future motion prediction. In the second row, the ego vehicle
continues straight, while the front-right taxi, the adjacent black
car, and the rear white-and-blue taxi all wait at the traffic
light, indicating they will likewise proceed straight once it
turns green. VERDI correctly predicts these straight-ahead
trajectories shown as red lines aligned with each vehicle’s
heading, whereas the supervised e2e baseline mistakenly
forecasts leftward and backward movements. This confirms
that the VLM commonsense reasoning substantially improves
the accuracy of predictions on other agents’ motion. In the
third row, VERDI produces a mostly straight trajectory with a
slight rightward adjustment, as shown in both the front-view
and BEV projections. In contrast, the Supervised e2e baseline
chooses a sharp right turn that would collide with the barrier.

C. Ablation Study

We conduct ablation experiments to analyze the contribution
of each component. All model derivations are trained based
on VAD-tiny with a sub-sampled set of nuScenes, which we
describe in more detail in Appendix C.

Alignment Module Variations. In Table II, we show that
each alignment module improves the performance at varying
rates. To evaluate models trained with aligning only certain
modules p, we simply set �i = 10 for i = p and �j = 0 for
j 6= p. Notably, aligning only features of the perception module

6

TABLE II: Ablations Module Alignment. Results on aligning
different e2e modules. Bolded numbers stand for the best and
italic numbers stand for second best.

Aligned Modules `2 error #

Perception Prediction Planning (1s) (2s) (3s) (avg.)

1.23 2.07 2.94 2.08
X 1.14 1.91 2.70 1.92

X 1.17 1.95 2.77 1.96
X 1.15 1.90 2.70 1.92

X X 1.19 1.99 2.82 2.00
X X 1.20 1.97 2.76 1.98

X X 1.16 1.90 2.66 1.90

X X X 1.14 1.90 2.69 1.91

TABLE III: Ablations VLM embeddings. Ablation results
with VLM embeddings of varying quality.

VLM Embeddings `2 (1s) # `2 (2s) # `2 (3s) # `2 (avg.) #

Baseline (no VLM) 1.23 2.07 2.94 2.08
Adversarial VLM 1.22 2.04 2.88 2.05
QwenVL-7B-CLIP 1.20 2.01 2.84 2.02
QwenVL-72B-CLIP 1.19 1.99 2.84 2.01
QwenVL-72B-ST-mini 1.21 2.04 2.89 2.05
QwenVL-72B-ST-base 1.15 1.93 2.74 1.94

improves `2 loss in the short term (1 second), while aligning
only the prediction and planning modules improves `2 loss in
the long term (3 seconds). Aligning with all three achieves a
desired balance of short and long-term objectives, resulting in
a low average `2 loss. This result is consistent with the way
we split the trajectories into past and future to align with each
module, causing alignment with only perception to be short-
sighted. Aligning with the planning module alone achieves
good performance, possibly because planning reasoning uses a
query containing perception and prediction data. We provide
more training details in Appendix C-A, showing the loss curve
saturating.

VLM Embedding Variations. We investigate the role of
VLM embeddings and ablate our model by providing VLM
embeddings of varying qualities. In Table III, we report
that using a higher-quality VLM (Qwen-72B rather than
Qwen-7B) improves performance. The choice of the text
encoder and hence the shared latent space impacts performance.
Further, we find that using CLIP [44] as text encoder yields
worse performance than the all-mpnet-base-v2 sentence-
transformers model, since bag of words used by CLIP leads
to less semantically meaningful embeddings. Moreover, we
evaluate with an adversarial VLM that generates false text
embeddings and aligns the adversarial text features with the
driving features. To generate the false texts, we shuffle the
true perception and prediction VLM embeddings, as well as
the counterfactual responses for planning (e.g., “speed up, turn
right abruptly, run into the barrier”). With this set of VLM
embeddings, the performance of the e2e model remains mostly
unchanged from the baseline method. We hypothesize that this
is because the e2e model learns to ignore VLM information
in this scenario.

V. CONCLUSION

We present VERDI, a training-time method that distills a
Vision–Language Model reasoning into a lightweight end-to-
end autonomous-driving stack by aligning each submodule with
VLM reasoning embeddings. Through extensive experiments
and ablation studies on nuScenes, VERDI achieves a 10%
performance gain in `2 distance over the supervised baseline
without reasoning embeddings. Although our unoptimized
implementation runs at 4.5 Hz, it has not yet been accelerated
with TensorRT or additional compression, leaving substantial
headroom for faster inference in practical deployments. In the
future, we plan to not only extend the method to additional
vision tasks, such as depth and occupancy prediction, but also
provide supervision with closed-loop simulation, potentially
mutually improving the aligned driving model and VLM in
tandem.

VI. LIMITATIONS

While VERDI presents a promising approach to distilling
VLM reasoning into modular autonomous driving systems,
several limitations remain.

Reasoning-Driving Alignment Loss. VERDI shows that
aligning the VLM’s textual reasoning with intermediate module
outputs effectively transfers semantic understanding. However,
this alignment relies on the design of the cosine similarity
loss across features, which may fail to capture finer-grained
semantics. Future work could explore more expressive align-
ment objectives or incorporate contrastive learning strategies
that better preserve more nuanced structural reasoning.

Pretrained VLMs. Our results depend on the capabilities of
the VLM. Although we use Qwen-2.5-VL-72B due to its
ease of access and satisfactory performance, we do notice that
it sometimes inaccurately explains the reasoning processes.
As shown in our ablations, lower-capacity VLMs lead to
degraded performance, while adversarial or poorly aligned
prompts can nullify the benefit of reasoning supervision. A
promising direction would be to investigate more performant
VLMs or task-specific finetuning to improve reasoning quality.

Multi-Modality Coverage. Currently, VERDI focuses on
aligning visual and textual modalities but does not consider
other sensory inputs such as LiDAR or radar. Additionally, the
system only leverages VLM supervision during training, and
does not adapt post-deployment. Future work could explore
continual learning or co-training frameworks where the driving
model and VLM can mutually refine each other through
interaction.

Evaluation in Closed-Loop Simulation. VERDI is cur-
rently evaluated only in open-loop settings on the nuScenes
dataset. This does not fully capture downstream planning per-
formance, especially under compounding errors or interactions
with dynamic agents. A natural next step is to evaluate VERDI
in closed-loop simulators such as CARLA [52], which would
enable systematic stress testing in diverse, interactive, and
controllable environments. Such evaluation would also allow
benchmarking VERDI’s ability to generalize across different
cities, weather conditions, and corner-case driving scenarios.

7

ACKNOWLEDGMENTS

Zhiting Mei and Anirudha Majumdar were partially sup-
ported by the NSF CAREER Award #2044149, the Office
of Naval Research (N00014-23-1-2148), and a Sloan Fel-
lowship. Felix Heide was supported by an NSF CAREER
Award #2047359, a Packard Foundation Fellowship, a Sloan
Research Fellowship, a Sony Young Faculty Award, a Project
X Innovation Award, and an Amazon Science Research Award.
The authors would like to thank Mario Bijelic for helpful
discussions, paper editing and proofreading on this work.

REFERENCES

[1] L. Di Lillo, T. Gode, X. Zhou, M. Atzei, R. Chen, and T. Victor,
“Comparative safety performance of autonomous-and human drivers:
A real-world case study of the waymo driver,” Heliyon, vol. 10, no. 14,
2024.

[2] M. Jung, J. Park, and M.-S. Pang, “Safety on autopilot: An empirical
investigation of autonomous driving and traffic safety,” 2024.

[3] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 17 222–17 231.

[4] X. Liang, Y. Wu, J. Han, H. Xu, C. Xu, and X. Liang, “Effective
adaptation in multi-task co-training for unified autonomous driving,”
Advances in Neural Information Processing Systems, vol. 35, pp. 19 645–
19 658, 2022.

[5] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun,
“End-to-end interpretable neural motion planner,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8660–8669.

[6] Y. Zhang, Z. Zhu, W. Zheng, J. Huang, G. Huang, J. Zhou, and J. Lu,
“Beverse: Unified perception and prediction in birds-eye-view for vision-
centric autonomous driving,” arXiv preprint arXiv:2205.09743, 2022.

[7] L. Zhang, Y. Xiong, Z. Yang, S. Casas, R. Hu, and R. Urtasun, “Learning
unsupervised world models for autonomous driving via discrete diffusion,”
arXiv preprint arXiv:2311.01017, 2023.

[8] X. Zhang, X. Tan, Y. An, Y. Li, and Z. Fan, “Oatracker: Object-aware
anti-occlusion 3d multiobject tracking for autonomous driving,” Expert
Systems with Applications, vol. 252, p. 124158, 2024.

[9] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin,
W. Wang et al., “Planning-oriented autonomous driving,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2023, pp. 17 853–17 862.

[10] B. Jiang, S. Chen, Q. Xu, B. Liao, J. Chen, H. Zhou, Q. Zhang,
W. Liu, C. Huang, and X. Wang, “Vad: Vectorized scene representation
for efficient autonomous driving,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 8340–8350.

[11] S. Chen, B. Jiang, H. Gao, B. Liao, Q. Xu, Q. Zhang, C. Huang, W. Liu,
and X. Wang, “Vadv2: End-to-end vectorized autonomous driving via
probabilistic planning,” arXiv preprint arXiv:2402.13243, 2024.

[12] Z. Li, Z. Yu, S. Lan, J. Li, J. Kautz, T. Lu, and J. M. Alvarez, “Is
ego status all you need for open-loop end-to-end autonomous driving?”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 14 864–14 873.

[13] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[14] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2446–2454.

[15] J.-J. Hwang, R. Xu, H. Lin, W.-C. Hung, J. Ji, K. Choi, D. Huang, T. He,
P. Covington, B. Sapp et al., “Emma: End-to-end multimodal model for
autonomous driving,” arXiv preprint arXiv:2410.23262, 2024.

[16] H. A. Simon, “Bounded rationality,” Utility and probability, pp. 15–18,
1990.

[17] B. D. Jones, “Bounded rationality,” Annual review of political science,
vol. 2, no. 1, pp. 297–321, 1999.

[18] J.-J. Hwang, R. Xu, H. Lin, W.-C. Hung, J. Ji, K. Choi, D. Huang,
T. He, P. Covington, B. Sapp, J. Guo, D. Anguelov, and M. Tan,
“EMMA: End-to-End Multimodal Model for Autonomous Driving,”
Oct. 2024, arXiv:2410.23262 [cs] version: 1. [Online]. Available:
http://arxiv.org/abs/2410.23262

[19] S. Xing, C. Qian, Y. Wang, H. Hua, K. Tian, Y. Zhou, and
Z. Tu, “OpenEMMA: Open-Source Multimodal Model for End-to-End
Autonomous Driving,” Dec. 2024, arXiv:2412.15208 [cs]. [Online].
Available: http://arxiv.org/abs/2412.15208

[20] L. Chen, O. Sinavski, J. Hünermann, A. Karnsund, A. J. Willmott,
D. Birch, D. Maund, and J. Shotton, “Driving with llms: Fusing object-
level vector modality for explainable autonomous driving,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 14 093–14 100.

[21] Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K.-Y. K. Wong, Z. Li, and
H. Zhao, “Drivegpt4: Interpretable end-to-end autonomous driving via
large language model,” IEEE Robotics and Automation Letters, 2024.

[22] S. Wang, Z. Yu, X. Jiang, S. Lan, M. Shi, N. Chang, J. Kautz, Y. Li,
and J. M. Alvarez, “Omnidrive: A holistic llm-agent framework for
autonomous driving with 3d perception, reasoning and planning,” arXiv
preprint arXiv:2405.01533, 2024.

[23] C. Sima, K. Renz, K. Chitta, L. Chen, H. Zhang, C. Xie, J. Beißwenger,
P. Luo, A. Geiger, and H. Li, “Drivelm: Driving with graph visual question
answering,” in European Conference on Computer Vision. Springer,
2024, pp. 256–274.

[24] W. Wang, J. Xie, C. Hu, H. Zou, J. Fan, W. Tong, Y. Wen, S. Wu,
H. Deng, Z. Li et al., “Drivemlm: Aligning multi-modal large language
models with behavioral planning states for autonomous driving,” arXiv
preprint arXiv:2312.09245, 2023.

[25] X. Tian, J. Gu, B. Li, Y. Liu, Y. Wang, Z. Zhao, K. Zhan, P. Jia, X. Lang,
and H. Zhao, “Drivevlm: The convergence of autonomous driving and
large vision-language models,” arXiv preprint arXiv:2402.12289, 2024.

[26] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[27] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, “End-to-end
autonomous driving: Challenges and frontiers,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

[28] P. S. Chib and P. Singh, “Recent advancements in end-to-end autonomous
driving using deep learning: A survey,” IEEE Transactions on Intelligent
Vehicles, vol. 9, no. 1, pp. 103–118, 2023.

[29] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “Diffstack: A
differentiable and modular control stack for autonomous vehicles,” in
Conference on robot learning. PMLR, 2023, pp. 2170–2180.

[30] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang, L. Lu, X. Jia, Q. Liu, J. Dai, Y. Qiao, and H. Li,
“Planning-oriented autonomous driving,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

[31] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced
autonomous driving using interpretable sensor fusion transformer,” in
Conference on Robot Learning. PMLR, 2023, pp. 726–737.

[32] Z. Yang, L. Chen, Y. Sun, and H. Li, “Visual point cloud forecasting
enables scalable autonomous driving,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp.
14 673–14 684.

[33] Y. Yang, B. Feng, K. Wang, N. Leonard, A. B. Dieng, and C. Allen-
Blanchette, “Behavior-inspired neural networks for relational inference,”
arXiv preprint arXiv:2406.14746, 2024.

[34] R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou,
F. Heide, and C. Pal, “Latent variable sequential set transformers for
joint multi-agent motion prediction,” arXiv preprint arXiv:2104.00563,
2021.

[35] K. Renz, K. Chitta, O.-B. Mercea, A. Koepke, Z. Akata, and A. Geiger,
“Plant: Explainable planning transformers via object-level representations,”
arXiv preprint arXiv:2210.14222, 2022.

[36] S. Biswas, S. Casas, Q. Sykora, B. Agro, A. Sadat, and R. Urtasun,
“Quad: Query-based interpretable neural motion planning for autonomous
driving,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024, pp. 14 236–14 243.

8

http://arxiv.org/abs/2410.23262
http://arxiv.org/abs/2412.15208

[37] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao, “St-p3: End-to-end
vision-based autonomous driving via spatial-temporal feature learning,” in
European Conference on Computer Vision. Springer, 2022, pp. 533–549.

[38] S. Doll, N. Hanselmann, L. Schneider, R. Schulz, M. Cordts, M. En-
zweiler, and H. P. Lensch, “Dualad: Disentangling the dynamic and
static world for end-to-end driving,” in 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024, pp. 14 728–
14 737.

[39] X. Weng, B. Ivanovic, Y. Wang, Y. Wang, and M. Pavone, “Para-
drive: Parallelized architecture for real-time autonomous driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 15 449–15 458.

[40] C. Pan, B. Yaman, T. Nesti, A. Mallik, A. G. Allievi, S. Velipasalar,
and L. Ren, “Vlp: Vision language planning for autonomous driving,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 14 760–14 769.

[41] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[42] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, 2021.

[43] X. Xu, M. Li, C. Tao, T. Shen, R. Cheng, J. Li, C. Xu, D. Tao, and
T. Zhou, “A survey on knowledge distillation of large language models,”
arXiv preprint arXiv:2402.13116, 2024.

[44] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning Transferable Visual Models From Natural Language
Supervision,” in Proceedings of the 38th International Conference on
Machine Learning. PMLR, Jul. 2021, pp. 8748–8763, iSSN: 2640-3498.
[Online]. Available: https://proceedings.mlr.press/v139/radford21a.html

[45] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco,
C. Gordon, C. Schuhmann, L. Schmidt, and J. Jitsev, “Reproducible
Scaling Laws for Contrastive Language-Image Learning,” 2023, pp.
2818–2829. [Online]. Available: https://openaccess.thecvf.com/content/
CVPR2023/html/Cherti Reproducible Scaling Laws for Contrastive
Language-Image Learning CVPR 2023 paper

[46] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,
C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in
neural information processing systems, vol. 33, pp. 18 661–18 673, 2020.

[47] C. Sancaktar, C. Gumbsch, A. Zadaianchuk, P. Kolev, and G. Martius,
“Sensei: Semantic exploration guided by foundation models to learn
versatile world models,” arXiv preprint arXiv:2503.01584, 2025.

[48] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[49] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu,
F. Huang, H. Wei et al., “Qwen2. 5 technical report,” arXiv preprint
arXiv:2412.15115, 2024.

[50] “sentence-transformers/all-mpnet-base-v2 · Hugging Face,” Jan.
2024. [Online]. Available: https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

[51] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[52] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[53] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai,
“Bevformer: learning bird’s-eye-view representation from lidar-camera
via spatiotemporal transformers,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

APPENDIX A
INFERENCE TIME VLM HALLUCINATION

Methods that use finetuned multimodal VLMs at inference
time are subject to the risk of hallucinations, which largely
stem from the VLMs’ limited spatial reasoning capabilities, as
discussed in Section 1.0. Since these models are trained almost
exclusively on 2D image data, they lack understanding of depth
cues provided by modalities like LiDAR. As a result, VLMs
often misjudge object orientation and distance, producing
descriptions that contradict the scene’s geometry. We show

OpenEMMA Response (Bus Scene)

Scene Description: As an autonomous driving
labeller, I would describe the driving
scene based on the provided image and the
information about the camera’s history.
Here is the description:
1. **Traffic Lights**: There are no visible
traffic lights in the image. 2. **Movements
of Other Cars or Pedestrians**: There are
no other cars or pedestrians visible in
the image. 3. **Lane Markings**: The road
has clear lane markings, including a solid
white line on the right side and a dashed
white line on the left side. There is also
a black and white striped curb on the left
side of the road.
The image shows a quiet Object Description:
In the driving scene, there are several
road users that you should pay attention
to:
1. **Bus (Location: Center of the
image, moving towards the camera)**: -
Description: The bus is moving towards
you on the same road. It is important to
monitor its speed and direction to ensure
safe overtaking or passing. - **Why it’s
important**: Ensuring you have enough space
to overtake safely is crucial to avoid
collisions. ...

Fig. 5: OpenEMMA Testing Example (Bus Scene) on the
nuScenes Dataset [13]. In the front-view image, OpenEMMA’s
projected future path is overlaid as light blue. An orange bus
occupies the same lane, traveling in the same direction as the
ego vehicle. Solid white lane markings run along the right side,
with a white-striped curb on the left. OpenEMMA erroneously
plans a leftward trajectory, which would result in a collision
with that curb.

three examples of VLM hullucination from OpenEMMA [19],
an open-source implementation of EMMA [15]. OpenEMMA
uses the front image as the only input modality to the VLM
and uses the chain of the thought to reason about the scenes,
driver intent, and planning decisions.

In Figure 5, an orange bus is driving directly in front of
the ego vehicle, traveling in the same direction. However,
the VLM’s response for the “Bus Scene” (highlighted in red)
involves three clear hallucinations. First and most importantly,

9

https://proceedings.mlr.press/v139/radford21a.html
https://openaccess.thecvf.com/content/CVPR2023/html/Cherti_Reproducible_Scaling_Laws_for_Contrastive_Language-Image_Learning_CVPR_2023_paper
https://openaccess.thecvf.com/content/CVPR2023/html/Cherti_Reproducible_Scaling_Laws_for_Contrastive_Language-Image_Learning_CVPR_2023_paper
https://openaccess.thecvf.com/content/CVPR2023/html/Cherti_Reproducible_Scaling_Laws_for_Contrastive_Language-Image_Learning_CVPR_2023_paper
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

OpenEMMA Response(City Scene)

Scene Description: As an autonomous driving
labeller, I would describe the driving
scene based on the provided images and
the information available from the camera
at a 0.5-second interval over the past 5
seconds.
Current Frame (0.5 seconds ago): -
Traffic Lights: Not visible in the
current frame. - **Other Cars:** - A white
van is driving on the left side of the road,
moving in the same direction as the viewer.
- A bus is also driving on the left side of
the road, moving in the same direction as
the viewer. - Several cars are visible on
the right side of the ...

Fig. 6: OpenEMMA Testing Example (City Scene) on the
nuScenes Dataset [13]. In the front-view image, OpenEMMA’s
predicted trajectory is overlaid in light blue. The ego vehicle’s
current lane is clear of obstacles or other traffic. On the left,
a white van, a bus, and several smaller cars approach in the
opposite direction in the adjacent lane. Despite this clear path,
OpenEMMA incorrectly plans a rightward turn—risking a
potential collision.

it wrongly describes the bus as moving toward the viewer
on the same road. Second, it invents a dashed line on the
left side—there is actually only a painted curb. Third, it self-
contradicts by stating that no other cars or pedestrians are
visible, despite the parked cars in the upper right corner and the
bus itself clearly appearing in the image. The planned intent—a
slight left turn—would clearly result in a collision with the
curb and shoulder. Because the VLM relies only on a single
2D image without any depth cues or a reconstructured BEV
view, it lacks the spatial reasoning needed to anticipate such
obstacles, undermining both the accuracy and interpretability
of using its output directly for planning.

In Figure 6, the ego vehicle travels alone down the road with
no obstacles directly ahead. On the opposite side of the road, a
white bus, a white van, and several smaller cars approach from
the left in the oncoming lane. However, the VLM’s response
for the “City Scene” wrongly reports that the bus and van
are both on the left side of the road and moving in the same
direction as the ego vehicle, an error that causes the planned
trajectory to steer inaccurately to the right.

OpenEMMA Response (Traffic light Scene)

Scene Description: As an autonomous driving
labeller, I would describe the driving
scene based on the provided images and
the information available from the camera
at a 0.5-second interval over the past 5
seconds.
Current Frame (0.5 seconds ago): -
Traffic Lights: The traffic light in
the center of the image is red, indicating
that vehicles must stop. - **Other Cars**: -
The car directly in front of you is a silver
sedan, which appears to be stationary. - To
the left, there is a white sedan that is
also stationary. - To the right, there is a
black sedan that is Object Description: In
the driving scene, there are several road
users that you should pay attention to:
1. **FedEx Truck (Location: Right side
of the image, near the center)** -
Description: The FedEx truck is on the
right side of the image, near the center.
It is important to pay attention to this
truck because it is a large vehicle that may
have a longer stopping distance than smaller
cars. You should be prepared for it to slow
down or stop suddenly, especially if it is
making a turn or changing lanes. ...

Fig. 7: OpenEMMA Testing Example (Stop Sign Scene) on
the nuScenes Dataset [13]. In the front-view image, all cars
in front stop for the red traffic lights. There is no trajectory
planne dand projected onto the front image. Notice, the white
FeDex car on the right corner. Due to the lack of the depth
and spatial understandingting, openEMMA suggested to keep
an eye on this FeDex van since it thinks it could be a treat to
the ego vehicle.

In Figure 7, the ego vehicle and surrounding cars have
all stopped at the red light and are waiting for it to turn
green, so no trajectory is planned. However, OpenEMMA’s
response surprisingly highlights the white FedEx van on the
right, presumably because it appears near the image center
and thus seems close enough to require extra braking distance.
A human observer, on the other hand, would immediately
recognize that this van poses no real threat at its actual distance.
This misattention stems from the model’s lack of explicit depth
perception and spatial reasoning, which leads it to hallucinate

10

a hazard where none exists.
VERDI avoids single-view hallucinations by leveraging

multi-view imagery and constructing a BEV map. From the
multi-view image set, we generate a BEV representation that
encodes spatial constraints, including lanes, road boundaries,
other agents, and obstacles, ensuring accurate geometric context
for downstream planning. Simultaneously, VERDI distills the
VLM’s strong visual recognition to identify scene objects
and align their textual embeddings with the projected multi-
view image features, producing dense, semantically informed
features that feed into the BEV encoder.

APPENDIX B
IMPLEMENTATION DETAILS

A. Full Prompt for VLM Queries (Section 3.2 in main).

Below, we show the full chain-of-thought prompts used to
acquire VLM reasoning embeddings. The system prompt is
parsed for every prompt, and the perception, prediction, and
planning prompts shown below take inputs from answers to
previous modules.

System Prompt

You are an expert driver collecting data
in various scenarios for a self-driving
car. Now, you are annotating the collected
trajectories by providing concise
and accurate descriptions as short,
comma-separated sentences.

Perception

The images shown are the multi-views of a
driving scenario at the beginning and end
of the trajectory, in the order of [front
left, front, front right, back left, back,
back right]. The past {T} time steps (0.5
seconds each) of the vehicle states, in the
form of [x, y, z, vx, vy, vz], is given as:
{...}

What do you see in the scene? List the
following details in order: number of
lanes; agents (if any) chosen from
[car, truck, construction_vehicle, bus,
trailer, barrier, motorcycle, bicycle,
pedestrian, traffic_cone]; Location of the
objects (if any) chosen from [front, left,
left-front, left-behind, right, right-front,
right-behind, behind]; List them from left
to right and front to back. Only list the
objects that are visible in the images. Add
one descriptive word for each object, e.g.,
red car.

Prediction

The images shown are the front views of a
driving scenario at the beginning and end
of the trajectory. The past {T} time steps
(0.5 seconds each) of the vehicle states, in
the form of [x, y, z, vx, vy, vz], is given
as: {...}

What actions did other agents take? Describe
in the same order they were listed.

Perception: {answer to perception prompt}

Planning

The images shown are the front views of a
driving scenario at the beginning and end
of the trajectory. The past {T} time steps
(0.5 seconds each) of the vehicle states, in
the form of [x, y, z, vx, vy, vz], is given
as: {...}

What actions did you take? Please list
all the actions taken chosen from the
list: {go straight, speed up, maintain
speed, move slowly, stop smoothly, stop
abruptly, reverse, turn left slightly, turn
on blinker, turn right slightly, turn left
abruptly, turn right abruptly, turn around,
merge into the left lane, merge into the
right lane}

Perception: {answer to perception prompt}
Prediction: {answer to prediction prompt}

B. Progressive Feature Projector (PFP) for Perception

We introduce Progressive Feature Projectors (PFP) to pro-
gressively compress and project perception, prediction and
planning features of end-to-end models After obtaining the
results from implicit e2e features to language aligned feature
spaces.

PFPperception�
Layer Activation Output Dimension

0 Input: Fperception - RB⇥6⇥256⇥12⇥20

1 Conv3D ReLU RB⇥256⇥1⇥12⇥20

2 Conv2Ds=2,p=1 ReLU RB⇥256⇥6⇥10

3 Conv2Ds=2,p=1 ReLU RB⇥256⇥3⇥5

4 Conv2Ds=1,p=1 ReLU RB⇥256⇥3⇥5

5 Reshape - RB⇥(256·3·5)

6 Linear - RB⇥D

TABLE IV: Architecture of the PFP for Perception. To
achieve alignment between language and perception features
the presented architecture compresses and extracts language
space-aligned information from the perception features of the
e2e model.

Especially in the perception stage of autonmous driving
e2e models feature maps, such as intermediate features of the
BEV encoder, e.g. BEVformer [53] in VAD [10], become

11

very large. For this stage we introduce a unique PFP to
progressively compress the large feature map while preserving
the feature information needed. We present an overview of the
implementation used in VERDI in Tab. IV

Initially a batch of multi-view image features with the shape
of Fi

perception 2 RB⇥V⇥C⇥H⇥W
, where B is the batch

size, V = 6 is the number of surrounding camera views,
C = 256 is the channel dimension, and H = 12, W = 20
are the spatial dimensions after the image feature extraction.
The Input features are then compressed across there view
dimension using a 3D Convolution. Then the fused map is
processed by a sequence of 2D convolutional layers to reduce
the spatial dimension and extract essential information. A final
2D convolution refines these coarse spatial features without
further down-sampling. Finally, we reshape the feature map
into a flat vector for the subsequential processing and apply a
linear projection to obtain the final compressed feature. This
feature will be used to align with the encoded feature map
from VLM’s annotation, where D represents the size of the
shared feature space.

C. Fully Connected Layers (MLP) for Prediction and Planning
In contrast to perception, the prediction and planning features

of the e2e model do not have a natural two- or three-
dimensional spatial structure. These stages feature sequences
are of the form Fi 2 RB⇥S . We therefore compress respective
features into a representation of dimension D that can be
aligned with VLM-processed features adopting a stack of
L fully-connected (MLP) layers, each followed by Layer
Normalization and a ReLU activation.

All linear projection layers are are implemented with
normalization and a ReLU nonlinearity as described in Tab. V.
Ultimately the output is again projected to the hidden dimension
Dhidden.

This output fP serves as the unified feature representation
for the downstream prediction and planning module. Note that
for prediction and planning stage we will use two separate
models, that do not share any parameters as they are handling
different tasks respectively.

PFP{prediction, planning}
�

Layer Normalization Activation Output
Dimension

0 Input: Fi - - RB⇥6⇥S

1 Linear LayerNorm ReLU RB⇥Dhidden

l = 2,
. . . L� 1

...

L Linear LayerNorm ReLU RB⇥Dhidden

L+ 1 Linear - - RB⇥D

TABLE V: Architecture of the PFP for Prediction and Plan-

ning. To achieve alignment between language and prediction
or planning features the presented architecture compresses and
extracts language space-aligned information from the respective
e2e modules.

7

P1P2P3 P1P3P2P3P1P2P3P2P1Baseline

Training Loss

Fig. 8: Training loss over gradient steps for all module
variations (each trained for 30 epochs). We observe that as
more modules are aligned, the training loss increases. Here, P1,
P2, and P3 refer to alignment of the perception, prediction, and
planning modules, respectively. The ablation study evaluates
different combinations of these alignments, and in every case
the loss curves plateau on this small ablation dataset, indicating
training saturation.

APPENDIX C
ABLATION LOSS AND DETAILS

A. Module Variations

We generate a smaller dataset for the ablation study to
mitigate the time complexity of using the full dataset. For the
module variations ablation study, we aim to reduce training
time while preserving the full dataset’s diversity. This ablation
dataset contains trajectories from each scene in the full dataset
that begin at t = 0, 10, and 20 and run for 10 time steps.
Since most scenes span around 40 time steps, these samples
evenly cover the entire dataset with no overlaps. As shown in
Fig 8, P1, P2 and P3 means perception, prediction and planing
alignment separately. All models are trained for 30 epochs
and evaluated on the full test set. We show that both VERDI
and baseline model trainings saturate on this ablation dataset
in Fig 8, making the comparison fair. VERDI shows 8.2%
improvement over the baseline method (VAD-tiny), showing
the effectiveness of distilling VLM’s reasoning capability to
the driving modules.

B. VLM Embedding Variations

In this VLM-embedding ablation study, our goal is to
reduce training-time complexity while preserving overlap in
the training data. Following our module ablation setup, we
select three trajectories of ten time steps each. To evaluate
the VLM’s reasoning consistency, we start those trajectories
at t = 0, 5, and 10, which creates five overlapping time
steps between each pair. The intuition behind these time step
choices is to amplify the impact of embedding quality: a large
VLM with strong reasoning capabilities should yield consistent
outputs across overlapping time steps—thereby improving
performance—whereas a smaller VLM with weaker reasoning
will likely produce inconsistent results on the same time steps,
degrading performance. The results show that with the Qwen
75B model and the base sentence-transformer encoder, we
achieve the largest improvement 6.7% compared to the baseline
(VAD-tiny).

12

VLM Perception: �, pedestrian, left-front, walking pedestrian, right-front, crossing silver car, right-front, parked.

Supervised e2e fails to detect the silver car in the rear view marked by the red frame both in BEV and front view. VERDI successfully detects the silver car in the rear view, marked by a green box in both BEV and front view.

Pe
rc

ep
tio

n
Supervised e2e (VAD-Base) VERDI

VLM Prediction: Vehicle moved forward, bus maintained lane, no significant lateral movement, consistent speed observed, ...

VERDI accurately predicts the buses’ stable forward path.

Pr
ed

ic
tio

n

Supervised e2e fails to perceive the buses, and mistakes a barrier for a car.

VLM Perception: � lanes, silver car left, white truck right-front, green trailer left-backv, black car left-behind, white building behind, cloudy sky

Supervised e2e fails to detect the green trailer in the rear view marked by the red frame both in BEV and front view. VERDI successfully detects the trailer in the rear view, marked by a green box in both BEV and front view.

Pe
rc

ep
tio

n

VLM Perception: � lanes, silver car, front, gray building, left-front, white car, left, silver truck, right-front.

VERDI detects the car right in front, and plans to stop accordingly.

Pe
rc

ep
tio

n

Supervised e2e fails to perceive the car right in front, causing the downstream planner to be overly aggressive.

Fig. 9: Additional qualitative comparison of VERDI (Ours, right column) and the Supervised e2e model (baseline, left column)
on the nuScenes dataset [13]. Each entry shows the multi-view camera observations on the left and the BEV view on the right
at one time step t. The left panel overlays the ego agent’s planned 3-second trajectory on the front-camera image and BEV
panel as a solid green line that fades to blue. The BEV panel renders the ego vehicle as a green rectangle, pedestrians and other
vehicles as red rectangles, and their predicted 3-second trajectories as red lines. Each of the example shows our successful
performance on the perception, prediction, and planning modules, indicated by ⇤, while failures are highlighted by ⇤. We also
show the VLM texts response for each testing case. We observed that the VERDI’s behavior highly aligns with the VLM’s
response, showing the successful VLM reasoning and commonsense distillation.

APPENDIX D
ADDITIONAL QUALITATIVE RESULTS

We present additional visualization results in Figure 9,
illustrating four scenarios in which the supervised e2e model
fails—either by missing agents on the road, mispredicting their
future trajectories, or planning a path that leads to a collision
due to perceptual errors. In contrast, VERDI correctly detects
the vehicles behind in the first and third rows (marked by
⇤) and accurately predicts the forward motion of the yellow
and white buses (second row, ⇤). Most interestingly, in the
fourth row, VERDI comes to a reasonable stop at the red traffic
light because it perceives the car ahead, whereas the baseline
model overlooks this vehicle and proceeds forward, resulting
in a collision (marked by ⇤). We also queried the VLM on
these cases and observed that VERDI’s behavior aligns closely
with the VLM’s response, demonstrating the successful VLM
reasoning distillation.

13

	Introduction
	Related Work
	VLM-Embedded Reasoning
	Problem Formulation
	Obtaining Language Embeddings
	Obtaining Driving Model Alignment with VLM Reasoning

	Experiments
	Quantitative Assessment
	Qualitative Assessment
	Ablation Study

	Conclusion
	Limitations
	References
	Appendix A: Inference Time VLM Hallucination
	Appendix B: Implementation Details
	Full Prompt for VLM Queries (Section 3.2 in main).
	Progressive Feature Projector (PFP) for Perception
	Fully Connected Layers (MLP) for Prediction and Planning

	Appendix C: Ablation Loss and Details
	Module Variations
	VLM Embedding Variations

	Appendix D: Additional Qualitative Results

