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Abstract—Effective robotic systems for long-horizon human-
robot collaboration must adapt to a wide range of human
partners, whose physical behavior, willingness to assist, and
understanding of the robot’s capabilities may change over time.
This demands a tightly coupled communication loop that grants
both agents the flexibility to propose, accept, or decline requests
as they coordinate toward completing the task effectively. We ap-
ply a Mixed-Initiative dialog paradigm to Collaborative human-
roBot teaming and propose MICoBot, a system that handles the
common scenario where both agents, using natural language, take
initiative in formulating, accepting, or rejecting proposals on who
can best complete different steps of a task. To handle diverse,
task-directed dialog, and find successful collaborative strategies
that minimize human effort, MICoBot makes decisions at three
levels: (1) a meta-planner considers human dialog to formulate
and code a high-level collaboration strategy, (2) a planner
optimally allocates the remaining steps to either agent based
on the robot’s capabilities (measured by a simulation-pretrained
affordance model) and the human’s estimated availability to help,
and (3) an action executor decides the low-level actions to perform
or words to say to the human. Our extensive evaluations in
simulation and real-world—on a physical robot with 18 unique
human participants over 27 hours—demonstrate the ability of
our method to effectively collaborate with diverse human users,
yielding significantly improved task success and user experience
than a pure LLM baseline and other agent allocation models.
More information on our website: https://mico-bot.github.io/

I. INTRODUCTION

We aim to build robots that can seamlessly collaborate with
humans in everyday household tasks. Such collaboration is
critical for deploying today’s robots with limited capabilities.
To be a truly effective partner, a collaborative robot must strive
for task success with minimal human effort, while adapting
dynamically to a human user’s capabilities, preferences, and
willingness to help. Beyond adapting, the robot must also learn
to communicate the real-time delegation of task components
based on which agent—human or robot—is better suited for
each. Existing approaches fall short of this ideal: modern AI
assistants respond only to human-initiated interactions [58, 1],
while prior human-robot interaction (HRI) solutions often
assume full control over the collaboration plan and complete
willingness from the human partner [67]. We argue that a
truly collaborative human-robot team requires a paradigm shift
towards a model where both agents can take initiative to
propose, bargain, and accept or reject proposals from each
other as they discuss in natural language how to best complete
a task. In this paper, we introduce such a collaborative system,
MICoBot (Mixed-Initiative Collaborative roBot), which we
believe is the first to enable mixed-initiative natural language

dialog for real-world physical collaboration between robots
and humans.

MICoBot enables mixed-initiative dialog to negotiate the
allocation of task steps between a human and a robot collab-
orating on a physical task, and to coordinate the physical and
verbal actions needed to execute the plan. We formulate this
task-allocation problem as a constrained optimization where
the goal is to find the most suitable agent to perform each
step of the task, maximizing success while minimizing human
effort, as well as respecting the human-initiated requests. To
handle a wide range of dialog, MICoBot makes optimization
decisions across three levels. First, a meta-planner determines
the high-level strategy for collaborating with the human,
incorporating human-imposed constraints (such as steps they
want themselves or the robot to perform), and creating reactive
code to generate the necessary robot actions (verbal or phys-
ical). This layer is implemented as an LLM-based coder that
generates adaptive planning code. Second, a planner executes
the generated code to determine the optimal collaboration
approach, taking into account the current environment state,
a self-assessment of the robot’s capabilities via an affordance
model trained in simulation, and a dynamic evaluation of the
human’s availability and willingness based on prior interac-
tions. Finally, an action executor carries out the next step of
the plan, which could involve either performing a manipulation
action or initiating/responding to a dialog with the human.

Through extensive experimental evaluation, we thoroughly
validate our system in both simulation (with LLM-simulated
humans of varying willingness and responsive moods) and
the real world through a user study involving 18 unique
participants collaborating with a Tiago mobile manipulator on
three household tasks. Our approach outperforms a pure LLM
baseline by 60% in success rate, while reducing the amount
of human effort required compared to an all-human oracle by
60%. Additionally, our method was preferred over the pure
LLM baseline by at least 80% of participants.

In summary, our work’s contributions are four-fold: (1)
we introduce a new problem setting that integrates mixed-
initiative natural language dialog with mixed-initiative human-
robot interaction; (2) we propose a novel optimization frame-
work for task allocation, balancing human and robot effort
and success through a unified metric; (3) we provide a
new simulator for collaborative household tasks built on top
of MiniBehavior [32] that includes LLM-controlled virtual
humans and is available on our website; and (4) robotic
system and framework: we develop MICoBot, a three-

https://mico-bot.github.io/
https://mico-bot.github.io


Robot-Initiated 
Dialog

Could you open the package using 
the scissors?

There are no scissors on the 
coffee table.

I can bring the scissors for you! 
However, I am unable to open the 

package with the scissors.

Ok, if you bring the scissors, I will 
open the package.

Ok, I will do 
that now.

Can you please open the package 
and place it on the coffee table?

Human-Initiated 
Dialog

Absolutely!

Thank you, please put 
the car in as well.

No worries! I’ll happily put them 
in for you.

Good job! We need to seal the box. 
Please bring the ribbons here

When that is done, I will close 
the box and seal it. 

I’m busy. I hope you put the tissue 
and the car in the box.

Thank you so much for covering the 
box and wrapping it!

No worries!

Fig. 1: We present MICoBot, a system for human-robot collaborative settings where both agents can initiate and carry out
physical and verbal actions to negotiate how to accomplish a task together. Our system supports both robot-initiated (top row)
and human-initiated (bottom row) task-directed dialog, where both agents discuss who is best suited to perform steps in a
long-horizon task. The trace shows real dialog and physical interactions from our user studies (see our video and website).

level hierarchical solution for mixed-initiative speech2speech
human-robot collaboration that flexibly adapts to a wide range
of real human collaborators in physically grounded, long-
horizon tasks.

II. RELATED WORK

Mixed-initiative dialog [8, 3, 15] refers to communication
with freeflowing questions and answers from both parties. In
the NLP field, the dominant chatbot paradigm adopted by large
language models (LLMs) largely eschews mixed-initiative in-
teraction: humans pose substantive questions, and the chatbot
primarily responds to fulfill these requests [58, 1]. Recent
work has sought to make dialog systems more goal-directed
and proactive by incorporating mixed-initiative strategies—for
example, persuading users to donate to charity, enhancing
users’ emotional well-being [17, 88, 12, 19], or clarifying am-
biguous human requests [62, 18, 13]. However, none of these
systems addressed mixed-initiative dialog in grounded, real-
world collaborative scenarios involving physical manipulation
tasks.

In the human-robot interaction (HRI) field, researchers have
developed human-robot collaboration systems that interact
through language but are restricted to single-initiative dialog.
Some of these systems integrate LLMs as task planners or
delegators [83, 50, 22] for tasks like real-world cooking [83]
and object sorting [50]. Other systems implement a leader-
follower paradigm in simulated worlds, where the leader
issues natural language instructions for the follower to exe-
cute [79, 35, 80, 24]. Single-initiative HRI systems can ask
humans for clarification [65] or assistance [6, 34, 82], or
inform humans of their observations [11, 53, 9]. However, by
supporting only single-initiative dialog, these systems lack the
capacity to adapt to the evolving nature of the human, robot,
and environment—limiting their capacity to find the optimal
division of labor that respects user preferences. [50].

Some works in HRI have explored mixed-initiative col-
laborative systems without dialog, only with physical ac-
tions [23, 57, 7, 66, 60, 30]. In particular, Baraglia et al. [4]
studied separate regimes of agent initiative (human-initiative,
requesting help, or robot-initiative, proactively helping), but
failed to support a natural human-robot dialog. By focus-
ing solely on physical actions, these prior works overlook
the critical role of communication in effective collaboration,
thereby limiting the flexibility of the human-robot team. With
MICoBot, we enable both agents to take initiative—through
both physical and verbal actions—via task-grounded dialog.

Several prior works in robotics and planning have studied
the problem of human-robot optimal task allocation, typi-
cally optimizing the time to perform a task or minimizing idle
agents, posing the problem as a scheduling problem [81, 86].
Others have prioritized different objectives, such as safety [20],
through the formulation of a constrained optimization prob-
lem [77]. While these solutions may achieve shorter execution
times, they assume a priori known capabilities and availability
of all agents, including both robots and humans. In contrast,
MICoBot can adapt to the specific human’s willingness to help
by estimating its availability based on previous dialog.

III. PROBLEM SETTING: TASK COLLABORATION WITH
MIXED-INITIATIVE DIALOG

Fig. 2: Our MDP Formulation for Mixed-
Initiative Collaboration

MDP
Formulation.
In this paper,
we study
human-robot
collaboration
for shared
manipulation
problems
where mixed-
initiative



dialog occurs.
In these
problems, we assume that both agents can observe the state
of the world, s ∈ S, and perform actions, a ∈ A = Ap ∪Av ,
comprised of a physical action space, Ap, that directly affects
the physical state of the environment s, (e.g., move objects,
open them, etc.), and a free-form, natural language verbal
action space, Av , that are directly observed by the other agent
but do not change the physical state. We model the problem
as a Markov Decision Process (MDP) from the robot’s point
of view (see Fig. 2), where on each environment step, the
robot performs some action, aR ∈ Ap,R ∪ Av,R and receives
an observation o = [I, av,H , sproprio ] consisting of an RGB-D
image I , an optional verbal action from the human partner
av,H , and the robot’s proprioceptive state sproprio . Within
each environment step, the human may perform a series of
actions, aH ∈ Ap,H ∪ Av,H , in its own physical and verbal
action space after perceiving the world state and robot’s
previous dialog, av,R.

Physical and Verbal Action Spaces. The physical and
verbal action spaces, Ap and Av , are shared between both
agents. Each element of these action space are a param-
eterized action primitive represented by the pair, ap/v =
(ωp/v, θp/v). ωp is the type of the physical action primi-
tive (open, pick-and-place, etc.) and θp are the cor-
responding parameters (e.g., what object to open or pick
and where to place it). We assume that humans are fully
competent in executing all steps of a collaborative household
manipulation task, but may be unwilling or unavailable to
perform some or all required actions. Their behavior can
range from indifferent (never acting) to overly proactive
(completing the entire task without robot involvement). In
contrast, robots often have limited manipulation capabilities
and may be unable to execute more complex actions. ωv is the
type of the verbal action primitive (ask_human_for_help,
respond_to_human, etc.) and θv are the corresponding
parameters that define the necessary context of the verbal prim-
itive (e.g., what step the robot needs help on, or can/cannot
perform). While the types of verbal actions are limited, the
generated language based on them is freeform and open-
vocabulary. MICoBot first selects an abstract verbal action
from this space, then translates it into a natural language
utterance to negotiate with the human—conveying its requests
and the assistance it requires for successful collaboration.
MICoBot must reason over the asymmetries in physical ca-
pabilities to devise collaboration strategies and negotiate them
with verbal actions, maximizing task success while minimizing
human effort.

Collaborative Task Definition and Problem State-
ment. We assume the collaborative task is defined by a
task plan of length K, known to both agents and repre-
sented as a sequence of unassigned physical action primi-
tives, [ap,0, ..., ap,K−1], such as [(pick-and-place(box,
table), . . . , close(box)], obtained from the task instruc-
tions or off-the-shelf task planner. To complete the manipu-
lation task while minimizing human effort, the system must

allocate steps of the plan between the two agents—negotiating
with the human through robot-initiated dialog to suggest
assignments, adapting to human preferences through human-
initiated dialog, and ultimately executing its assigned physical
actions. At each step t, the system must compute the best allo-
cation of the remaining steps of the plan, G = [gt, ..., gK−1],
where ∀t, gt ∈ {H,R}. The optimal allocation G∗ maximizes
the expected task success probability while minimizing total
human effort. These objectives are inherently competing: a
policy focused solely on maximizing success might allocate all
steps to the human (assumed to be perfectly competent); con-
versely, minimizing human effort alone would assign all steps
to the robot, even when it may be incapable of completing
certain steps. The optimization also incorporates constraints
conveyed through the mixed-initiative dialog history, such as
task allocation requests or proposed task splits. The resulting
allocation G∗ determines whether the robot executes the
current step (R) or negotiates with the human for assistance
(H).

IV. MICOBOT: MIXED-INITIATIVE COLLABORATIVE
ROBOT

Collaborative Task Allocation as Constrained Optimiza-
tion.

In MICoBot, we formulate the step allocation problem
for collaborative tasks as a constrained optimization, where
the objective is to maximize expected task success while
minimizing human effort. Constraints—such as preferences for
certain steps to be done by a particular agent—are inferred
through dialog with the human. To simplify the optimization
and avoid a complex multi-objective formulation, we combine
success probability and effort into a single cost metric for
each step, regardless of whether it is performed by the robot
or the human. Building on prior work on temporal distances
in reinforcement learning [54], we use Q-functions to unify
these two components. We assume each task step is executed
by a multi-task policy π that operates at a fixed control
frequency (e.g., once per second), performing continuous low-
level control. In this low-level MDP (distinct from the high-
level task MDP described in Sec. III), we define the reward
as r = −1 per time step until the skill completes or times
out, at which point rtermination = 0. A well-trained Q-
function, Q : ot × at = (ωt, θt) 7→ R with a discount
factor of 1, then represents the negative expected number
of timesteps until skill completion from a given state. For
a highly competent agent that never fail (e.g., a human),
this corresponds to the average timesteps required to perform
the action. For an imperfect agent that may fail, the Q-
function reflects a weighted expectation over both successful
and failed outcomes—where failure contributes a significant
timestep penalty (timeout) weighted by its probability. We
assign each agent a distinct Q-function: QR for the robot
and QH for the human. These agent-specific Q-functions thus
provide a unified, interpretable cost metric for comparing step
allocations, jointly capturing both execution time (effort) and
likelihood of success.
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Fig. 3: MICoBot consists of 3 decision-making modules: a meta-planner that outputs a strategy for task collaboration expressed
through adaptive planning code, a planner that executes the code and optimizes our objective in Equation 1 to find the next
primitive action to take, and the action executor that outputs the low-level physical action trajectory or verbal utterance to say
to the human.

However, directly optimizing step allocation using only
the Q-functions described above introduces three key limi-
tations that diverge from realistic human-robot collaboration
scenarios: (1) human and robot effort are treated as equally,
ignoring the higher value typically placed on human time and
attention; (2) the human is assumed to always comply with
robot-initiated requests, overlooking variability in willingness
or availability; and (3) human-initiated requests or preferences
are not taken into account, limiting the system’s ability to
adapt to human intent. To address (1), we introduce a human-
effort factor, α, indicating how much more valuable human
effort is compared to robot effort. To address (2), we adjust the
human Q-values by incorporating an inferred probability pH,t

that represents the likelihood of the human agreeing to perform
action aH,t = ωt(θt) when asked. For less cooperative users,
this probability lowers the expected success of the action,
effectively increasing the magnitude of the negative Q-value
due to potential human refusal. To address (3), we treat the
optimization problem as subject to constraints, C1, . . . , Cn, ex-
tracted from human-initiated dialog—such as explicit requests
to perform specific steps themselves or to delegate them to the
robot. Altogether, we propose the following objective to find

the optimal task allocation G:

max
gt,...,gT

T−1∑
t

(
1gt=H · α

pH,t
+ 1gt=R

)
Qgt(st, at),

s.t. C1, . . . , Cn ≤ 0.

(1)

that minimizes expected time-to-success while prioritizing
saving human effort.

A. MICoBot Framework

MICoBot is a three-level framework (Fig. 3) that includes
1) a meta-planner, which parses previous human dialog and
generates code to optimize for task allocation and select the
next action for the robot, 2) an iterative planner, which updates
planning state variables, allocates and decides the next action
to perform, by executing the code, and 3) an action executor,
which carries out the action primitive, either through low-level
physical actions or with an utterance to say to the human.

L1: Meta-planner. The meta-planner dictates the overall
strategy for the lower levels to follow. Based on the most
recent human dialog, the current symbolic state of the world,
the task plan, and approximately 15 in-context learning (ICL)
examples, it generates two pieces of code: first, task allocation
code to adapt the optimization computation, such as to map
human dialog into additional constraints, and second, action
selection code, to determine how to choose the next action,



such as whether to engage in additional dialog before making
further progress on the plan. The meta-planner is implemented
as an LLM-based (GPT-4o) coder.

L2: Iterative Planner. The iterative planner executes code
generated by the meta-planner in two stages. In the first stage,
it runs the optimization routine, which enumerates all possible
task allocations and selects the one that maximizes the objec-
tive in Eq. 1. To compute this, the planner instantiates agent-
specific Q-functions based on the current state and candidate
actions (see below for details on Q-function), and estimates
the probability of human assistance, pH,t, using an LLM-
based sentiment analysis over the prior human-robot dialog.
By adjusting pH,t, MICoBot adapts to varied user sentiments
by estimating the expected cost of assigning tasks to them.
In the initial iteration, the planner incorporates all constraints
produced by the meta-planner from the mixed-initiative dialog
history. If no feasible allocation is found—for instance, if a
human insists the robot perform a step it cannot complete—the
planner iteratively relaxes the most recent constraint from hu-
man dialog. In the second stage, once the optimal allocation is
determined, the planner invokes meta-planner code to generate
the optimal action—verbal or physical—a = (ω, θ) to execute.

L3: Action Executor. The action executor is responsible
for executing the action primitive selected by the planner.
For physical actions, it generates a trajectory for navigation
and arm movement to reach the location and manipulate the
target object while avoiding obstacles. Following a similar
pipeline to Shah et al. [69], we use the move_base ROS
package for path planning over a 2D occupancy map, and
Grounding DINO [42] to segment the target object from the
scene based on the natural language query in θt. An RGB-
D camera is used to backproject segmented image pixels
into a 3D point cloud, from which we identify graspable or
placeable points in the robot’s workspace. Inverse kinematics
(IK) is then used to move the arm to these points. For verbal
actions, we employ GPT-4o to generate natural language
utterances to communicate with the human, based on both the
intended dialog intent (e.g., help request, split proposal) and
the verbal action parameters (context required for appropriate
generation) from the upstream planner. Using approximately
10 in-context learning (ICL) examples, the LLM produces
free-form language grounded in the task context.

Training Q-functions. MICoBot’s optimization process
depends on accurate approximations of the Q-functions, which
capture each agent’s expected effort and likelihood of success
when executing a task step. To estimate the robot’s Q-function
(QR), we use the OmniGibson simulator [38], configured with
a coarse model of the real-world task and environment (see
Appendix for visualizations). In simulation, we execute action
primitives that closely mirror those used by the physical robot,
recording both completion times and failure cases. These
statistics are used to construct QR as described earlier in this
section. Since the task state is represented symbolically in both
the simulator and the real-world system, the sim-to-real gap
is minimal. To estimate the human’s Q-function (QH ), we
assume humans do not fail at task execution. Thus, we only

require time estimates for each step, which MICoBot obtains
by prompting an LLM to predict how long a human would
take to execute action at = ωt(θt), plus a travel time estimate
based on the human-object distances.

Hierarchical Plan. To improve communication for long-
horizon task plans, MICoBot groups adjacent low-level steps
into semantically meaningful abstract actions that can be
discussed more succinctly with the human. The system only
descends to a finer-grained level of detail when neces-
sary—during negotiation over low-level step assignments. This
hierarchical approach reduces the frequency and complexity of
dialog, resulting in more efficient and user-friendly communi-
cation.

V. EVALUATION

We evaluate MICoBot in both real-world and simulated
settings. In the real world, a Tiago mobile manipulator col-
laborates with a human user on household manipulation tasks.
In simulation, we use the Mini-Behavior gridworld [32] with
a simulated human, allowing for larger-scale experimentation
and controlled comparisons across methods, particularly in
relation to human behavior and dialog dynamics. As suggested
before, a successful robotic collaborator must complete the
task efficiently while minimizing human effort. Accordingly,
our primary evaluation metric is the success rate per unit of
human effort. We also report subjective measures of robot
behavior, including user satisfaction, preference rankings, and
Likert-scale ratings.

Environment. In the real-world, we perform our experi-
ments in a mock apartment with a kitchen and living room
area with commonplace furniture. In all of our tasks, the robot
and human work together on opposite sides of a coffee table,
and the human spends most of their time on the couch, where
they can do their own work. The human is allowed to be as
inactive or proactive as they wish and to perform physical and
verbal actions as defined in Section III (though we continue
running the trial if they initiate dialog beyond the scope).
Each human user study consisted of two 20-30 minute trials,
in which they collaborated with both our method and a pure
LLM baseline. The ordering of the two trials was randomly
determined. Trials for all methods terminate under any of the
following conditions: an irrecoverable primitive failure occurs,
4T steps have elapsed for a plan of length T , an infeasible
step is allocated to the robot twice consecutively, or the human
refuses twice to perform a step that the robot is incapable of
executing.

Baselines. Because multiple components of our method
are powered by LLMs, we compare our approach to a pure
LLM baseline (LLM) given the same information as our
meta-planner: symbolic state, dialog history, task plan, and α
human-robot effort tradeoff factor. The LLM baseline is also
provided with a list of the robot’s available skills and assumes
that the human always successfully completes a step once they
agree to perform it. The LLM baseline is prompted to produce
a plan allocation G that primarily optimizes for task success
and secondarily minimizes human effort.



Pour Package in Bowl
n = 6

Assemble Toy Car
n = 6

Pack Gift Box
n = 6

Average
n = 18

Ours LLM Ours LLM Ours LLM Ours LLM

Entire Task Success Rate (%, ↑) 50 0 67 0 67 0 61.1 0.0
% of task steps completed (↑) 83 60 94 29 88 50 88.2 46.4
% of steps performed by Human 21 5 60 5 35 21 38.8 10.4
% Users Preferring ... (↑) 83 17 100 0 67 33 83.3 16.7
Communicative ability (↑) 3.3/5 2.3/5 4.3/5 1.3/5 2.8/5 2.3/5 3.5/5 2.0/5
“Clearly communicated to me
when it couldn’t do something.” (↑) 4.3/5 2.3/5 3.7/5 1.2/5 4.2/5 2.5/5 4.1/5 2.0/5

Overall Satisfaction working w/ Robot (↑) 3.7/5 2.7/5 3.5/5 1.5/5 3.5/5 2.5/5 3.6/5 2.2/5

TABLE I: Comparison between our method and the LLM baseline across three real-world tasks. Ratings out of 5 are on the
Likert scale. By more effective task allocation and communication, our method is able to achieve much higher task success
rate and overall user satisfaction.
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Fig. 4: In both real-world user studies (left) and simulation trials with a simulated human (right), our method (red)
demonstrates the best tradeoff in achieving task success (y-axis) for a given amount of human effort (x-axis) than baselines
(blue) and our method’s ablations (pink).

To control for the amount of human effort elicited in the user
studies with our method, we compute an additional random
allocation baseline that does not involve a human participant,
RECB (random effort-controlled baseline). We denote the
percentage of steps done by the human in the user trials of
our method as pc. RECB randomly allocates the current step
to the human with probability pc, and assumes the human
always accepts the robot’s request. RECB also assumes access
to oracle robot primitives with 100% success rate.

In simulation, we additionally compare against an RL base-
line (hierarchical task allocator + robot policy; see Appendix
for details), and a naive Random baseline, which randomly
allocates either agent (with probability 50%) to perform the
next step.

Ablations. To measure the importance of mixed-initiative,
we perform the following ablations in simulation: H-init
and R-init, where the human or the robot alone can initiate
any dialog, respectively. We further ablate components of
MICoBot in simulation by running it w/o P_H (no pH,t

estimation) and w/o Plan Hierarchy (where our method talks
to the human in low-level ssteps).

Tasks. We performed user studies on 3 real-world tasks
(Pour Package into Bowl, Assemble Toy Car, and Pack Gift
Box) with 6 participants per task for a total of 18 unique

human participants. Each task is a long horizon sequence of
5 to 8 mobile manipulation steps. See Appendix for details.

Experimental analysis. Our experiments are designed to
answer the following research questions:

(1) Does our method achieve the best trade-off between
task success and minimizing human effort? In our real-
world user study (Table I), MICoBot achieves a 61% task
success rate, compared to 0% for the LLM baseline, by
leveraging human assistance on 38% of the steps. The LLM
baseline underperformed because it prioritized minimizing
human effort over task completion—requesting and receiving
help in only 10% of steps, even when the robot lacked the
capability to execute them. To control for the amount of
human effort received, we compare our method to RECB in
Figure 4. Despite RECB assuming oracle robot primitives with
100% success, our method still significantly outperforms it,
demonstrating a more effective balance between success and
human workload.

(2) How do users feel about working with our system?
The A/B blind preference test in Table I shows that 83% of
users preferred our method over the LLM baseline. Among the
three participants who favored the baseline, two experienced
trials in which neither method completed the task, while the
third preferred the baseline because it did not initiate conver-



sation—unlike our method, which occasionally requested the
user’s assistance, even though the task ultimately succeeded.

Our method also significantly outperformed the baseline
in overall satisfaction, scoring 3.6 out of 5.0 compared to
2.2 for the LLM. Participants rated our system as more
communicative (4.1 vs. 2.0), better at initiating dialog, and
more aware of its own limitations. In contrast, the LLM
baseline consistently failed to express when it needed help
and was often unwilling to reject tasks it could not complete,
leading to over-promises and task failures. A representative
dialog exchange—available in the Appendix and on our project
website—shows MICoBot successfully persuading an initially
reluctant user to perform a step the robot was incapable of
executing.

(3) Is mixed-initiative dialog critical to our method’s
performance? Figure 4 (right) shows that our full method
outperforms both ablated variants that restrict dialog to single-
initiative modes: robot-only initiation (R-init) and human-
only initiation (H-init). H-init performs especially poorly, as
it prevents the robot from requesting help for steps it cannot
execute. R-init performs slightly worse than the full method
because it does not allow the human to proactively initiate
dialog and assist when appropriate. These results underscore
the importance of mixed-initiative dialog in enabling flexible,
robust human-robot collaboration.

Additional experimental results and analysis (e.g. the role
of pH,t estimation), are in the Appendix.

VI. CONCLUSION

We proposed MICoBot, a real-world robotic collaborator
that can engage in mixed-initiative dialog with humans on
long-horizon mobile manipulation tasks. Our work represents
the first effort to unify two previously unconnected lines
of research: mixed-initiative dialog and HRI. To this end,
we formulated a novel optimization function and robotic
framework using mixed-initiative dialog as a rich interface for
task allocation to maximize task success while minimizing
human effort and complying with verbally-expressed human
preferences. Real-world user studies with 18 human partici-
pants and nearly a thousand trials in simulation demonstrate
the efficacy, adaptability, and user satisfaction of our method
across a diverse range of human physical and verbal behavior.

VII. LIMITATIONS AND FUTURE WORK

This paper represents our initial effort on uniting mixed-
initiative natural-language dialog with mixed-initiative human-
robot interaction. While we focused on delegating steps for
long-horizon manipulation tasks in a manner that maximizes
task success and minimizes human effort, we believe this
paper opens up exciting new avenues for future work. These
include enabling both agents learning to provide and incor-
porate spatial-temporal feedback to each other while perform-
ing a task, share relevant task information in an imperfect-
information setting, and replan and redefine a task as neces-
sary, all through mixed-initiative dialog interactions.

MICoBot has a number of limitations. First, it assumes a
fixed plan with a predetermined ordering of steps. It cannot
handle cases where the human wishes to add new steps to
or remove existing steps from the plan dynamically, such as
if the user tells the robot to “grab another cold drink while
you’re at the fridge before coming back to me.” Our method
also cannot handle cases where a robot and human wish to
collaborate simultaneously on the same step in the plan, such
as if the robot holds a roll of tape and the human cuts from it.
Furthermore, MICoBot does not support parallelization where
both the human and robot can work on different steps of a task
simultaneously. One way to address this would be to operate
on plan trees, where the parent nodes are steps that must be
done before the child nodes, and sibling nodes can be executed
by either agent in parallel.

Our method could be improved further by taking into
account more information about the user. For instance, MI-
CoBot assumes that “effort” is based on the time necessary
to perform a task until completion. However, effort may also
depend on the intensity of the task, how much the user enjoys
it, and how physically capable each user is—our method
had sidestepped this issue by assuming each human would
expend the same amount of effort for each action primitive
from some given state s. Finally, there are additional ways
to better predict pH,t, such as by processing tone-of-voice
and observing facial expressions, that can enable the robot
to produce more emotionally understanding dialogue, which
can potentially boost task success outcomes and increase user
satisfaction.
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APPENDIX

A. Real-world Task Descriptions

1) Task Plans: Fig. 5 depicts photos of our real-world tasks.
In Task 1: Pour Package into Bowl, the plan includes (steps
1-3) bringing the package, scissors, and bowl from the kitchen
to the coffee table, (step 4) opening the package with the
scissors, and (step 5) pouring the opened package into the
bowl. The robot is incapable of performing step 4 and must
rely on human help. In Task 2: Assemble Toy Car, the plan
includes (steps 1-3) bringing the parts tray, drill, and wheels
from the shelf to the coffee table, (step 4) using the drill and
wheel caps from the parts tray to put the wheels onto the
chassis, (steps 5-6) finding and switching the drill bit, and
(steps 7-8) screwing in the window and seats onto the car
with the drill. The robot is incapable of performing steps 4, 6,
7, 8, and has a low success rate for step 5. In Task 3: Pack
Gift Box, the plan includes (step 1) folding down the gift box
flap, (steps 2-3) putting the tissue paper and toy car into the
box, (steps 4-6) putting on the lid, getting the ribbons from the
console table, and wrapping them around the box, and (steps
7-8) cutting a piece of tape to stick the gift bow to the top of
the gift box. The robot is incapable of performing steps 4, 6,
and 7, and has a low success rate for steps 2 and 5.

Minimal human effort required to complete the tasks ranged
from just one step in Task 1 to four steps in Task 2, enabling
us to test how our system compares with baselines in various
regimes of dependence on human collaboration.

2) Hierarchical Plan Trees for Each Task: The robot as-
sumes a high-level plan understanding with the human, and
only communicates about low-level steps when necessary, such
as to split up a high-level step. These are the high and low-
level step breakdowns for each task, which we call the plan
hierarchy. The low-level steps are listed here in skill-parameter
pair format.

Task 1: Pour Package into Bowl (5 low-level steps)
1) Bring bowl and package to coffee table.

a) pickplace(bowl, coffee_table)
b) pickplace(package, coffee_table)

2) Open package.
a) pickplace(scissors, coffee_table)
b) pick_open_place(scissors, package,

coffee_table)

3) Pour package into bowl.
a) pick_pour_place(package, bowl,

coffee_table)

Task 2: Assemble Toy Car (8 low-level steps)
1) Bring parts to coffee table.

a) pickplace(parts_tray,
coffee_table)

b) pickplace(wheels, coffee_table)

2) Assemble wheels.
a) pickplace(drill, coffee_table)
b) put_on(wheels, car, drill)

Fig. 5: Real-world tasks from left to right: pouring package
into bowl, assembling toy car, and packing gift box.

3) Switch drill bit.
a) pickplace(hex_drill_bit,

coffee_table)
b) switch(hex_drill_bit, drill)

4) Assemble rest of car.
a) put_on(window, car, drill)
b) put_on(seats, car, drill)

Task 3: Pack Gift Box (8 low-level steps)
1) Assemble box.

a) fold(box_flap)

2) Put in gift.
a) pickplace(gift_tissue_paper, box)
b) pickplace(toy_car, box)

3) Seal the box.
a) cover(box_lid, box)
b) pickplace(ribbons, coffee_table)
c) wrap(ribbons, box)

4) Decorate the box.
a) cut_put(tape, scissors, box)
b) pickplace(gift_bow, box_lid)

B. Dialog Excerpts from our User Studies

1) Convincing a Reluctant User to Perform a Step: Our
system is able to flexibly handle long dialog interactions like
this one on Task 1 (opening and pouring the package into the
bowl), where it manages to convince the human to help with
opening the package.

Robot “Could you please open the package using the
scissors on the coffee table? Thank you so much!”

Human “There are no scissors on the coffee table.”
Robot “Let’s collaborate to open the package! I can place

the scissors onto the coffee table, and you can then
use them to open the package. Thank you for your
help!”

Human “I think you should bring the scissors, and then you
should use the scissors to open the package.”

Robot “I’m happy to place the scissors on the coffee table
for you. However, I’m not able to open the package
with the scissors and place everything on the table.
Let me know if there’s anything I can do to assist.”

Human “Ok, if you bring the scissors, then I will open the
package with the scissors.”

Robot “Great! I’ll happily place the scissors on the coffee
table. Thank you for taking care of opening the
package with the scissors!”



Robot [brings the scissors]
Human “Thanks for bringing the scissors!”
Robot “Could you please open the package with scissors

and place it on the coffee table? Thank you!”
Human “Ok, I will do that now!”
Human [opens the package]
2) Failure Case: This is an example of MICoBot unable

to act on the motion-level feedback (making the tissue paper
“lay flatter”) that the human wants the robot to perform.
Additionally, MICoBot misunderstands the human and thinks
they are talking about the ribbons step when the human is still
talking about the tissue paper.

Human “Please pack the gift.”
Robot [Puts tissue paper into the box.]

Human “It would be nice if the parchment was laying
flatter.”

Human “The compartment is kind of squished underneath
the car. If you can hold the car for me, I can fix the
parchment quickly.”

Robot “I’m sorry, but I can’t cover the box with the
lid. Could you help with that part? Thank you so
much! Could you kindly help with sealing the box?
Specifically, could you cover the box with the lid?
Thank you so much for your assistance!”

Human “Yeah, I can, but can we fix the parchment first?
If you can pick up the toy car, I can fix the
parchment.”

Robot “I’m delighted to hear you’ll help! Unfortunately, I
won’t be able to wrap the ribbons around the box.”

Human “Okay, that’s fine. We can get to that later. Let me
put the lid to the box on and then we can talk about
the next steps.”

For the complete set of dialogs and operations in our human
trials, please visit our website at https://mico-bot.github.io/

C. MICoBot Implementation Details

1) Robot Q-function QR training in OmniGibson: To train
Q-functions for the robot, we first create a simulated OmniGib-
son environment with a PAL Tiago robot and an environment
that roughly matches the relative locations of the relevant
furnitures and objects. We then implemented each real-world
skill first in OmniGibson. Fig. 6 depicts example frames from
primitives in task 1 and task 3 we ran in the OmniGibson
simulator to collect sample Q-values for each skill.

We collected samples of the form (o, a, T ), where o is the
initial observation of the world, a is the skill-parameter pair
(ω, θ) taken by the robot at o, and T is the number of timesteps
the robot takes to succeed at a from o. If the robot does not
succeed in its execution, then T is set to some fixed constant
representing the maximum number of timesteps allowed in
each skill-parameter execution.

To train our Q-functions, we collect roughly 100 samples
for each action a and train with inputs (o, a) and target Q-
values −T using ℓ2 regression with the Adam Optimizer. Our
network architecture is extremely lightweight–2 linear layers

Task 1: Pick package from shelf (left) and place on coffee table
(right).

Task 3: Pick toy car from coffee table (left) and place into gift box
(right).

Fig. 6: Frames from primitive rollouts in OmniGibson for task
1 (left two images) and task 3 (right two images). Left and
right images within each task are frames near the beginning
and end, respectively, of each skill. The square image at the
top right of each frame represents the robot’s camera view
observation.

with hidden size 32, and an output size of dimension 1 for the
Q-value.

2) Human Q-function QH Estimation: To estimate QH , we
computed two terms. The first is the human’s stationary cost—
the number of seconds it would take for the human to perform
some task if the relevant items were all right in front of them.
This term was copied from the output of an LLM call, which
was prompted with a natural language description of the low-
level step in the task, and with a URL to the toy car (for task
2). The second term is the human’s traveling time—the number
of seconds it would take for the human to move from their
current location to where all the objects are. This was a simple
2D euclidean distance (in meters) between the assumed human
location on the couch (in the real-world user studies) and the
location of the objects, divided by the average human walking
speed of 1.4m/s. We recognize this is a crude estimate of
human effort, and we discuss the limitations of this in the
main text.

3) Forward Dynamics Model: Our Q-functions rely on state
and action inputs. However, computing the best task allocation
involves considering Q-values for future steps, which depends
on having knowledge of what the future state at that step will
be. This involves creating a forward dynamics model so that
we can estimate the future state n plan steps into the future,
which can be difficult to learn accurately for continuous states.
We sidestep this problem by using symbolic states for our Q-
values trained in simulation, and maintaining these symbolic
states during our real-world experiments. A symbolic state-
based forward model is feasible to hardcode in our problem
setting because we assume that each action affecting change
in the world is a skill-parameter physical primitive, where

https://mico-bot.github.io/


the effect is quite easy to specify symbolically. For instance,
the effect of pickplace(bowl, coffee_table) is that
the bowl moves from its original furniture to the coffee
table. Though this is a limitation of our method, learning a
forward dynamics model is not a contribution of our work,
so we leave the extension of our approach to continuous state
representations to future work.

D. Detailed Simulation Results

1) Setup: In simulation, we ran our method, the three
baselines (RL, LLM, random), and our method’s four abla-
tions (no pH,t estimation, no plan hierarchy, no R-initiative
dialog, and no H-initiative dialog) on eight different settings
of parameterized humans in simulation. These eight settings
were a cross product of 2 dialog mood settings (positive
and negative) and 4 ground-truth p̃H,t ∈ {0.0, 0.3, 0.7, 1.0}
settings (following the notation introduced in G, where the p̃
denotes the ground truth probability while the plain p denotes
our estimate). 10 trials were run for each method in each of
the eight settings for the parameterized human.

2) Simulation Experiments: In Table II, we show the results
of our method in simulation version of our real-world Task
1. Our method performs better than baselines especially on
scenarios where p̃H,t is low, because our method is able to
take initiative in dialog, such as to propose ways to split up
steps to make them more achievable with the simulated human.
The averages in Table II are plotted in Fig. 4.

E. User Study Details

1) User Instructions: Users were read the following in-
structions at the beginning of the study. (Instructions here are
shown for task 2.)

1) Thank you so much for coming for our user study!
We wanted to remind you to review the RIS before
proceeding, and that you may voluntarily opt-out of the
study at any time.

2) You are working with the robot to perform the task of
assembling the toy car. You must use the hexagonal drill
bit to screw in the wheels, and the phillips drill bit to
screw in the seat and the window. [Demonstrate these
steps to the human]. You and the robot operate on a
shared understanding of the plan. [Read the 4 high-level
steps of the plan tree for this task.]

3) Our goal is to simulate a home robot setting, where the
human (you) are relatively busy with your own tasks,
and once in a while you provide physical assistance and
talk to the robot. So you are free to do work during each
trial.

4) Once the robot asks you to do a step, and you accept,
you must finish that step successfully.

5) We will perform 2 trials, each of a different method.
6) Both you and the robot can do a subset of the steps in the

plan. You will communicate with the robot to determine
who does what steps.

7) These are the objects you will work with during the task.
I will move them now to their initial positions where

they will start at the beginning of each trial. [Move
objects to initial positions.]

8) For safety, I will gate-keep each of the robot’s physical
actions. In other words, the actions are generated by the
robot itself, but they will be displayed on the laptop
screen with a confirmation message, and I can either
allow that physical action to be executed by the robot,
or block the action from being executed if it brings the
robot to an unsafe location.

9) The robot will stay on the TV side of the coffee table,
while you will sit on the couch and stay on the couch
side of the coffee table.

10) You are free to get up off the couch if you want to
volunteer to perform steps that involve going to the sink
or shelf, but you can only go when the robot is stationary
and waiting on the other side of the coffee table. Steps
are done in sequential order; our system doesn’t support
parallelization (agents working simultaneously).

11) You will be communicating to the robot through this
headset. We will perform a mic-check now to make sure
it can pick up your voice. [Do mic check.]

12) Now, this is what the robot will sound like when it talkes
to you. [play audio sample of the robot.] Try responding
to it, and I will see if it can hear you.

13) The systems today can handle different kinds of dia-
log. (1) refusal/acceptance, (2) task allocation, such as
(“Could you pour the package in the plate later?” Or: “I
can pour the package onto the plate later.”), (3) silence—
you don’t need to respond to the robot every time, and
(4) a proposal to split up adjacent steps, such as “Please
bring me the drill so that I can put on the wheels.” You
may engage in any of these types of dialog, and the
robot may also engage in them when communicating to
you.

14) Do you have any questions before we start? I will let
you know when each trial begins and ends. Sometimes
trials may end prematurely.

2) Success Rate: Task success at each step is measured
by whether the end state has been achieved. For instance,
a pickplace(obj, furniture) step in the plan is
marked as successfully completed if the obj ends up on the
furniture after execution. This means that primitive errors
(such as a pickplace operation that accidentally moves the
object off of the furniture as the arm is retracting) count as a
failed execution.

3) Failure Analysis: In the real world, the main sources of
error of our method were as follows:

1) Task 1: Cut and Pour Package into Bowl. 3 failed trials
out of 6.

• 2 primitive errors (pouring missed the bowl, pack-
age grasping pressed into the shelf and wasn’t
placed properly)

• 1 perception error
2) Task 2: Assemble Toy Car. 2 failed trials out of 6. 1

failure that was rectified by human.



TABLE II: Simulation Task 1 Performance across different p̃H,t Values and Language Sentiments.

Human Parameters (Mood, p̃H,t)

Method Metric Positive Mood Negative Mood Avg. (%)0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0

Ours
Success Rate 3/10 6/10 9/10 10/10 1/10 4/10 9/10 9/10 63.75
Num Plan Steps Completed 3.6/5 4.2/5 4.8/5 5.0/5 3.2/5 3.8/5 4.8/5 4.5/5 84.5
Prop. Plan Steps done by Human 0.1667 0.2381 0.3125 0.4 0.03125 0.1579 0.354 0.377 25.47

LLM Baseline
Success Rate 2/10 2/10 4/10 7/10 3/10 6/10 6/10 6/10 45
Num Plan Steps Completed 3.4/5 3.4/5 3.7/5 4.4/5 3.6/5 4.2/5 4.0/5 4.2/5 77.25
Prop. Plan Steps done by Human 0.0588 0.05882 0.2162 0.1591 0.1111 0.1428 0.175 0.166 13.6

Random Agent
Success Rate 2/10 5/10 6/10 7/10 2/10 3/10 6/10 7/10 47.5
Num Plan Steps Completed 3.4/5 3.5/5 4.0/5 4.4/5 3.4/5 2.8/5 4.0/5 4.4/5 74.75
Prop. Plan Steps done by Human 0.1176 0.4286 0.525 0.7045 0.1176 0.2143 0.525 0.7045 41.71

RL
Success Rate 0/10 1/10 4/10 10/10 0/10 1/10 4/10 10/10 37.5
Num Plan Steps Completed 2.4/5 2.3/5 3.4/5 5.0/5 2.4/5 2.3/5 3.4/5 5.0/5 65.5
Prop. Plan Steps done by Human 0.125 0.1739 0.4412 0.54 0.125 0.1739 0.4412 0.54 32.0

Only R Init
Success Rate 0/10 3/10 9/10 10/10 0/10 5/10 9/10 10/10 57.5
Num Plan Steps Completed 3.0/5 3.6/5 4.8/5 5.0/5 3.0/5 4.0/5 4.8/5 5.0/5 83
Prop. Plan Steps done by Human 0.0 0.1111 0.3542 0.4 0.0 0.225 0.354 0.4 23.05

Only H Init
Success Rate 0/10 0/10 0/10 0/10 2/10 0/10 0/10 2/10 5.0
Num Plan Steps Completed 3.0/5 3.0/5 3.0/5 3.0/5 3.2/5 3.0/5 3.0/5 3.3/5 61.25
Prop. Plan Steps done by Human 0.0 0.0 0.0 0.0/3.0 0.1875 0.0 0.0 0.1212 3.86

Ours w/o p_help
Success Rate 3/10 5/10 9/10 10/10 2/10 3/10 9/10 9/10 62.5
Num Plan Steps Completed 3.6/5 4.0/5 4.8/5 5.0/5 3.4/5 3.4/5 4.8/5 4.7/5 84.25
Prop. Plan Steps done by Human 0.1667 0.3 0.3333 0.38 0.1176 0.2059 0.3125 0.4468 28.29

Ours w/o Plan Hier.
Success Rate 2/10 4/10 7/10 10/10 0/10 3/10 4/10 8/10 47.5
Num Plan Steps Completed 3.4/5 3.8/5 4.0/5 5.0/5 3.0/5 3.4/5 3.6/5 4.2/5 76
Prop. Plan Steps done by Human 0.0588 0.1316 0.25 0.24 0.0667 0.1176 0.1944 0.2381 16.22

• 1 dialog error: user wanted robot to perform a non-
step plan outside of its capabilities, and refused
when robot said it wasn’t able to perform it

• 1 primitive error: robot did not release its grasp of
the drill.

• 1 metaplanner dialog parsing error
3) Task 3: Pack Gift Box. 2 failed trials out of 6.

• 1 primitive error: placed bow on box but bow
dropped to floor as gripper retracted

• 1 termination condition triggered: rejected robot’s
help request proposal 3 times in a row.

The main sources of error of the baseline was as follows:
1) Task 1: Cut and Pour Package into Bowl. 6 failed trials

out of 6.
• 4 task allocation errors: Allocated the infeasible

package opening step to robot itself
• 2 primitive errors: poured but missed the bowl;

tipped over package while placing it
2) Task 2: Assemble Toy Car. 6 failed trials out of 6.

• 2 primitive errors: Dropped the drill which fell off
of the table when placing it

• 2 perception errors: Unable to pick out correct place
to place the object

• 1 task allocation error: allocated to put on wheels
itself.

• 1 termination condition triggered: got in a conver-
sational loop with the user.

3) Task 3: Pack Gift Box. 6 failed trials out of 6. 1 failure
that was rectified by human.

• 6 task allocation errors: 4 tried to put on the lid
itself; 2 tried to cut a piece of tape itself.

• 1 primitive error: robot inadvertently dropped the
car onto the floor as it was trying to place it.

4) Fault Recovery: Sometimes, the code produced by the
metaplanner is not executable. For fault recovery, the meta-
planner is automatically re-queried up to 2 additional times
to create code. If these attempts also produce non-executable
code, the most recent dialog from the human is ignored for 2
further, automated metaplanner requeries. These re-queries are
handled by a try-except block in the iterative planner module
of MICoBot.

F. RL Baseline Details

For our RL baseline which was evaluated in simulation,
we trained a hierarchical policy where the high-level policy
was a task allocator that outputted logits over two classes:
0 (Robot would perform current step), or 1 (Human would
perform current step). If the logit for 0 were highest, then the
image observation was passed into the low-level robot policy
that decided the discrete physical action to take in the world. If
the logit for 1 were highest, then the robot asked the human
the correct verbal action for help on that step. Reward was
sparse and only issued if all 5 steps were completed in the
task, in the proper order.

We initially trained the RL policy on two simulated human
settings: one where the human ground truth p̃H,t = 1.0, and
another where p̃H,t ∼ U [0, 1]. We were unable to obtain
policies with any non-zero training returns after thousands of
iterations on the latter setting, so we only reported results on
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H: Ok, I will do that now.

R: Could you please open the package with scissors 
and place it on the coffee table? Thank you!

H: Thanks for bringing the scissors.

R: [brings scissors to coffee table.]

R: Great! I'll happily place the scissors on the coffee table. 
Thank you for taking care of opening the package with the scissors!

H: Okay, if you bring the scissors, 
then I will open the package with the scissors.

R: I'm happy to place the scissors on the coffee table for you! 
However, I'm not able to open the package with the scissors 

and place everything on the table. 
Let me know if there's anything else I can do to assist!

H: I think you should bring the scissors 
and then you should use the scissors to open the package.

R: Let's collaborate to open the package! 
I can place the scissors onto the coffee table, 

and you can then use them to open the package. 
Thank you for your help!

H: There are no scissors on the coffee table.

R: Could you please open the package using the scissors 
on the coffee table? Thank you so much!.

H: Good job.

R: [brings bowl and package to coffee table.]

H: Please cut the package and pour it into the bowl.

Human Helpfulness Estimate Over Time
Probability Estimate
Human Rejection
Human Acceptance

Fig. 7: From a real-world user study: MICoBot’s pH,t estimation (blue line) reacts in real time to the human’s rejections (red),
acceptances (green), and encouraging remarks. All dialog is shown as y-labels. Green text denotes robot actions/dialog, and
blue text denotes human dialog. The timestep t increases from top to bottom on the y-axis.

the former setting, which explains why the RL policy does not
perform well when p̃H,t is low.

G. Additional Experimental Investigations

In addition to those discussed in Section V, we explore the
following additional experimental questions.

(4) How important is pH,t estimation at adapting to
human collaborators? A correct estimation of the true like-
liness of a human to help, p̃H,t, is critical: overestimating
causes MICoBot to overly rely on human effort, potentially
decreasing user satisfaction, while underestimating it lowers
task success outcomes if the robot needs to rely on its low-
success-rate skills instead of asking the human for help.

First, we examine in Fig. 7 a real-world instance of how well
MICoBot can estimate the probability of the human helping
on the next turn during the course of a user study. After
the robot’s help request was rejected twice in a row (top 2
red horizontal stripes), the robot’s helpfulness estimate of the
human plummets to 0.05. However, after the robot explains
its incapacity to use scissors, the human accepts the next two
help requests (in green) and the robot’s helpfulness estimate of

the human increases to 0.8. Note also that simple comments
from the human, such as a “Thank you” or “good job,” also
had positive effects on the estimated pH,t, because the robot
inferred that the human was in a more positive mood and hence
more likely to help. This graph demonstrates that MICoBot is
fairly competent at estimating a reasonable pH,t value when
calculating the human q-values for each step in the plan.

To analyze the effect of a good pH,t estimate on task
allocation, we demonstrate through a controlled toy-setting in
simulation in Table III exactly how the optimal task allocation
changes as the robot discovers more information about the
human’s willingness to help. Steps that are optimally allocated
to the human are shown in blue , and steps optimally allocated
to the robot are shown in green . The Q-values of the selected
agent in each cell are shown in parentheses. Table III depicts
a rollout on the open and pour package into bowl (Task 1)
in simulation, which has the same 5 step plan as the real-
world Task 1 described in Appendix A. Unlike our real-world
experiments, where α = 10, here we set α = 0.3 so that
human effort is considered around 3× cheaper than robot



TABLE III: Computed Best Task Allocation (and Agent Q-
values) During a Sim Trial on Task 1.

Env. Timestep Step 1 Step 2 Step 3 Step 4 Step 5
t = 0 H (-9.6) H (-7.2) H (-13.2) H (-2.4) H (-2.4)
t = 2 R (-13.0) R (-9.0) H (-13.2) H (-4.8) R (-1.0)
t = 6 – R (-12.0) H (-13.2) H (-4.8) R (-1.0)
t = 9 – – H (-13.2) H (-4.8) R (-1.0)
t = 16 – – – – R (-3.0)

effort, which causes every task to initially get allocated to
the human (at t = 0). Additionally, we program the human to
always reject the robot’s first help request on a specific step,
but to help the robot when it asks a second time.

As stated earlier, initially (t = 0) all steps are allocated
to the human. However, the human rejects the initial help
request from the robot, causing the pH,t estimate to drop
to 0.25, increasing the Q-values of the human and switching
the allocation of all but steps 2-3 to the robot after just two
environment timesteps (t = 2). (Recall that the robot cannot
perform step 3, and due to the hierarchical structure of our
plan, steps 2 and 3 are bundled together as an abstract step.)
This demonstrates that having a good pH,t estimate is crucial
to adapt to the human’s willingness to help. Since the human
demonstrated initial unwillingness to help, MICoBot quickly
learned to decrease its pH,t estimate and allocate many more
of the tasks to itself by the second timestep. Had MICoBot
not properly estimated pH,t, it would have repeatedly asked the
human for help even if the human was extremely unwilling to,
leading to worse user satisfaction in working with the robot.

H. Further Connections to Prior Work

1) Agents with Both Physical and Verbal Actions: MICoBot
relies on a heterogeneous action space that includes interacting
with the physical world and generating freeform dialogue to
a human collaborator. Prior works have developed policies
with a combined physical and verbal action space through
RL [16, 71] or IL (imitation learning) [59, 80]. Research
on language emergence in multiagent systems [61, 37] has
also examined how cooperative agents learn to communicate
through latent representations or natural language when per-
forming simulated robotic tasks [41, 44, 84, 43, 36]. However,
these works are typically limited to simulated domains, where
action spaces, and task dynamics are highly abstracted or
simplified. They often rely on limited communication proto-
cols without integrating grounded task structure, rich human
preferences, or real-world execution constraints. In contrast,
MICoBot leverages an LLM to generate freeform, grounded
dialogue within a shared task context, enabling fluid mixed-
initiative interaction and reasoning over both verbal and phys-
ical actions in real-world scenarios.

2) Natural Language and Robotics: Our work sits at the
broad, growing intersection of natural language and robot
learning. We refer the reader to various lines of work upon
which different modules of our method are based, including
language-conditioned robot policies [29, 46, 51, 52, 70, 78, 76,

33, 31, 68, 85], LLMs as task planners [27, 2, 10, 64], code-
based policies [40, 39, 28], hierarchical policies [73, 72, 5] and
planners [14, 45], vision-language representations [63, 89, 90]
for robotic control [56, 74, 75], and language-based reward
shaping for RL policies [55, 25, 26, 21, 47–49, 87].
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