
MotIF: Motion Instruction Fine-tuning

Abstract—While success in many robotics tasks can be deter-
mined by only observing the final state and how it differs from the
initial state – e.g., if an apple is picked up – many tasks require
observing the full motion of the robot to correctly determine
success. For example, brushing hair requires repeated strokes
that correspond to the contours and type of hair. Prior works
often use off-the-shelf vision-language models (VLMs) as success
detectors; however, when success depends on the full trajectory,
VLMs struggle to make correct judgments for two reasons. First,
modern VLMs often use single frames, and thus cannot capture
changes over a full trajectory. Second, even if we provide state-of-
the-art VLMs with an input of multiple frames, they still fail to
correctly detect success due to a lack of robot data. Our key idea
is to fine-tune VLMs using abstract representations that are able
to capture trajectory-level information such as the path the robot
takes by overlaying keypoint trajectories on the final image. We
propose motion instruction fine-tuning (MotIF), a method that fine-
tunes VLMs using the aforementioned abstract representations to
semantically ground the robot’s behavior in the environment. To
benchmark and fine-tune VLMs for robotic motion understanding,
we introduce the MotIF-1K dataset containing 653 human and
369 robot demonstrations across 13 task categories with motion
descriptions. MotIF assesses the success of robot motion given
task and motion instructions. Our model significantly outperforms
state-of-the-art API-based single-frame VLMs and video LMs
by at least twice in F1 score with high precision and recall,
generalizing across unseen motions, tasks, and environments.
Finally, we demonstrate practical applications of MotIF in ranking
trajectories on how they align with task and motion descriptions.
Project page: https://anonymous-sub1.github.io/

I. INTRODUCTION

MEASURING success in robotics has focused primarily
on what robots should do, not how they should do it.

Concretely, what is determined by the final state of an object,
robot, or end-effector [1], [2]. However, not all trajectories
that achieve the same final state are equally successful. When
transporting a fragile object, a path through safer terrain
could be considered more successful than a shorter yet riskier
route (Fig. 1a). Similarly, in the presence of humans a robot’s
actions when navigating, holding objects, or brushing human
hair (Fig. 1 b-d) can cause surprise, discomfort, or pain,
making such motions less successful.

Success detectors play an important role in robot learning
since they evaluate whether or not a robot has completed a
task. However, most overlook the importance of “how” the
task is accomplished, focusing on the initial and final states of
the trajectory [2], [3]. This simplification fails to account for
tasks that fundamentally require evaluating the entire trajectory
to assess success. As we incorporate robots into everyday
scenarios, the manner in which they complete tasks will become
increasingly important given the context of a scene and its
semantic grounding (e.g., avoid collision). Therefore, a more

holistic approach to success detection is needed that considers
both the task and how the agent should move to complete it.

While modern vision-language models (VLMs) have
recently been used as promising tools for success detection [2],
[3], they are unable to capture complex notions of how a task
is completed for two reasons. First, the majority of VLMs are
designed to reason over single images, while success detection
in robotics is inherently sequential. Second, even models trained
on multiple frames, like video LMs, struggle to recognize fine-
grained motion due to a lack of training data. To bridge this gap,
we explore how the choice of abstract motion representations,
such as visualizing trajectories, affects the performance of
both VLMs and video LMs. We propose a trajectory based
visual motion representation which overlays a robot’s past
trajectory on the current or final frame, capturing both the path
shape and its semantic connections to the environment. This
approach leverages the world knowledge encoded in VLMs
and refines it to assess robotic behaviors more effectively.

We propose motion instruction fine-tuning, a method
that fine-tunes pre-trained VLMs to equip the capability to
distinguish nuanced robotic motions with different shapes
and semantic groundings. Using the aforementioned trajectory
representation, we query our model to output a binary value
indicating whether the motion is correct (1) or incorrect (0).
To do so, we collect the MotIF-1K dataset, due to limited
availability of robot data with diverse semantically grounded
motions. We find that co-training mostly on human data with
limited robot data enables transfer to robotic motion under-
standing effectively. MotIF-1K contains a variety of motions
with 653 human and 369 robot demonstrations across 13 task
categories, offering extensive coverage of both the what and the
nuanced how of motion, complete with detailed annotations. It
identifies common types of motions featuring varying degrees
of semantic grounding, such as the robot’s relationship with
objects or humans in the environment. The dataset also captures
diverse path shapes, in terms of directionality, concavity, and
oscillation. For instance, paths in Fig. 1a differ in terms of
semantic grounding, where it might be undesirable for a robot
to pass over the grass. Fig. 1d describes how straight and curly
hairs require different brushing techniques. Notably, MotIF-1K
includes subtle motions that are often indistinguishable solely
by their start and end states (Fig. 4).

MotIF, a motion discriminator developed by fine-tuning
on MotIF-1K, shows further improved success detection on
nuanced robot motions. We evaluate MotIF on the test split of
MotIF-1K and demonstrate generalization to unseen motions,
tasks, and environments. We significantly outperform state-of-
the-art (SoTA) VLMs (e.g. GPT-4o, GPT-4V, and Gemini-1.5
Pro) with both single and multi-frame (video) input, with at
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Fig. 1: Different robotic motions for various tasks. For each task, we visualize two different motions (path 1 and 2) from
real robot demonstrations, where the trajectories share the same initial and final states. Most existing success detectors ignore
intermediate states, thereby cannot distinguish them.

least twice higher in both precision and F1, while maintaining
high recall. Additionally, we demonstrate using MotIF on using
the model output to rank real robot trajectories from a planner,
outperforming SoTA VLMs by at least 20.6% higher win rate.

II. RELATED WORK

With the recent development of large language models
(LLMs) and VLMs, foundation models have been used to
understand the environment and critique agent behaviors. Ad-
ditionally, the increasing use of visual observations in robotics
has brought attention to motion-centric visual representations.

Success Detection Using Foundation Models. [4], [5], [6],
[7], [8] use LLMs to generate reward functions that evaluate
agent behaviors. However, as LLMs cannot understand how a
robot’s actions are visually grounded in a scene, such methods
require everything including the state of the environment
to be translated into language. VLMs have been used to
understand and evaluate agent behaviors given visual and
language information. [9] use a VLM critic for general vision-
language tasks, and closed API-based models have been used
as behavior critics in robotics, even if inaccurate [10], [3].
Prior work [11], [10], [12], [13] have also used VLMs as
zero-shot reward models for training downstream policies.
[2] trains a VLM success detector for evaluating what was
achieved from the robot, but does not consider “how” the agent
solves the task. Other studies [14], [15], [16] train VLMs
to be physically or spatially grounded, but focus on static
environment understanding, not dynamic motions. [17] uses
joint states to generate motion descriptions, but is restricted
to short horizon, non-grounded motions from a set vocabulary
(e.g., move arm up, rotate arm right). In contrast, we fine-tune
VLMs to understand and evaluate grounded motions (e.g., make
a detour to the left of the table) and consider more complicated,
long-horizon, object or human interactive motions.

Motion-Centric Visual Representations. A growing interest
in motion-centric visual representations in robotics has led to
recent work in egocentric trajectory representation [18], [19]
and point tracking using optical flow [20], [21] or learned pre-
dictors [22], [23], [24]. Despite the recent development of video
language models (video LMs) [25], [26], [27], [28], [29], [30],
they often struggle to capture fine-grained motion nuances and
are computationally intensive. Prior works summarize trajectory
or actionable choices in a single image frame by visualizing
waypoints [18], keypoints in the environment [31], [32], or

desirable paths [19], [33]; however, the focus of these works
is mostly on conditioning the policy on these representations
to improve policy learning rather than evaluation of nuanced
motions and behaviors. We focus on using visual representa-
tions on top of exocentric views, which provide comprehensive
environment context, to analyze motion understanding.

III. MOTION INSTRUCTION FINE-TUNING (MOTIF)

In this section we first broaden the definition of success by
including motion as a core component. We then discuss why
pre-trained models are insufficient for motion-based success
detection in robotics. Finally, we introduce MotIF for fine-
tuning VLMs to be motion-aware success detectors.
A. Problem Statement

Success detection has been an integral part of recent
robotics literature. Typically, success detection is defined as
a binary function of the final state conditioned on the task,
y = f(oT |task) ∈ {0, 1} [2], where y is the binary success
label and oT is the image observation of the agent and the
environment at the final time step T . This restrictive assumption
prevents success detectors from criticizing how a task is
completed. For many tasks like collision-aware navigation, the
final state does not provide sufficient information to capture the
robot’s interaction with objects or humans in the environment.
Such tasks are often described by both their objective (i.e.
bring me lemonade) and their execution (i.e. avoid going over
the grass). In these scenarios, success cannot be determined by
just the final state. Perhaps the simplest approach is modeling
the entire trajectory, y = f(o1, . . . , oT |objective, execution);
however, this is computationally costly and often redundant. We
instead propose using an abstract visualization of the trajectory
τ = (o1, . . . , oT ). Notably, I(τ) outputs a 2D representation
of the full trajectory overlaid on the last image oT .

Suppose a task instruction T and motion description M
corresponds to the robot’s trajectory. Our goal is to assess
success on robot motions given task specifications describing
how the task should be done. Doing so requires assessing
motion or path shape and, if the task requires object or human
interaction, semantically grounding the robot’s motion in the
environment. Thus, we define the set of motions based on
two criteria: path shape and semantic grounding (see Fig. 5).
First, motions are distinguished based on properties of path
shapes such as directions of translations, rotations, oscillations,
repeated motions, and the convexity of curves. Second, semantic
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Fig. 2: Visual Motion Representations. We explore three visual motion representations: (a) single keypoint tracking, (b) optical flow, and
(c-d) multi-frame storyboard. For single keypoint tracking, temporal changes are shown with color gradient from white to green, ending with
a red circle. For optical flow, we visualize the flow of all keypoints with rainbow colors. We sample N keyframes for N -frame storyboard.

grounding in the environment involves understanding the
context of the scene and the robot’s interaction with the envi-
ronment. For instance, moving over or making a detour towards
an object implies the robot is aware of that instance. Similarly,
we consider the relative distance and orientation of the agent
with respect to the key objects in the scene (see examples in
project page). In the following sections, we develop a VLM
that acts as a success detector y = f(o1, . . . , oT |T,M).
B. Visual Motion Representations

Can foundation models be used for success detection?
While VLMs have demonstrated a strong understanding of
physical and causal commonsense reasoning [34], [35] and
semantic grounding [15], [14], [36], they often work with static
images as inputs, and cannot reason about sequential inputs
necessary for dynamic tasks. Understanding motion requires
not only isolating the most meaningful aspects of the scene but
also identifying which changes that occurred due to the robot’s
motion are semantically relevant to the task. One naive solution
is to pass multiple frames into the model as a storyboard, which
can perform poorly due to lower resolution images (see Fig. 2
c-d and the example of GPT-4o in project page). On the other
hand, video LMs can predict over multiple frames, but can
still struggle to understand fine-grained details over time and
require more compute than single-frame models, making them
more difficult to use in real-time. Instead of using raw image
frame(s) as input, we can look to prior work [19], [33] which
show that VLMs can effectively leverage diagrams or abstract
representations on top of image observations.

Representing a robot’s motion in a single image. To
improve motion recognition performance, we explore what rep-
resentations effectively capture a robot’s motion. To construct
diagrams of robotic motions, we overlay a robot’s trajectory on
the image observation as shown in Fig. 2 a-b. One solution is
to detect K keypoints {(x1

0, y
1
0), . . . , (x

K
0 , yK0 )} in the initial

frame I0, and track the movement of each keypoint until the
final frame IT (see Fig. 2b). Here, xk

t and ykt denote the x and
y coordinates of the kth keypoint in a 2D image observation at
timestep t, respectively. The detected visual traces, i.e., optical
flow, represent the apparent motions of the robot and how the
environment changes accordingly. While this solution helps a
single image representation contain the information of multiple
keypoints, the full optical flow with trajectories of all keypoints

Vision Encoder (CLIP ViT-L/336px)

1 ( = The motion is correct )    or   0 ( = The motion is incorrect )

Trajectory Visualization Module
(point tracking / optical flow / storyboard)

Text Tokenizer

Language Model
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Is the agent following the 
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Express the answer as 1 or 0.

Text Prompt

Fig. 3: Network Architecture. Given a visual motion rep-
resentation of a robot’s trajectory and its corresponding task
and motion specifications, our model outputs a binary value
indicating whether the motion is correct (1) or incorrect (0).

may obscure a large portion of the background and important
objects in the scene. Additionally, visualizing many keypoints
often results in indistinguishable or overlapping trajectories,
which may create visual clutter and reduce the clarity of the
motion.

Therefore, the proposed method, MotIF, visualizes the
trajectory of the most representative keypoint (see Fig. 2a), as a
simplified yet more interpretable visual motion representation.
We call the keypoint as point of interest, where a point of
interest is typically chosen as a point on the end effector’s
surface by human annotators. Compared to prior work [19] that
visualizes the center of mass of the end effector, our approach
ensures that the selected keypoint is visually recognizable and
not occluded. Details on labeling the point of interest and
visualizing its trajectory are provided in Section IV.

C. Fine-Tuning VLMs

While we can directly pass a single image visualizing the
robot’s trajectory into a model zero-shot, non-fine-tuned models
struggle to understand complex robotic motions. Section V
empirically shows that existing state-of-the-art VLMs often
infer undesirable motions as correct (false positives) or suc-
cessful motions as incorrect (false negatives). Prior works [14],
[15] have shown promising results fine-tuning VLMs to
improve their grounding capabilities and understanding of a
scene. Similarly, we also fine-tune VLMs with the different
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representations proposed earlier.
Model Architecture. Fig. 3 shows the network architecture

of our model, which is based on LLaVA-1.5 7B [37]. Given a
trajectory representation I(τ) as an image and a text prompt
consisting of a task instruction T and motion description M
followed by the question ”Is the agent following the motion
description or not? Express the answer as 1 or 0.”, our model
outputs a binary success prediction y. y indicates whether the
motion is correct (1) or incorrect (0) with respect to the task
and motion specification (T,M). During fine-tuning, only the
language model is updated, while the visual encoder is frozen.

Constructing Training Data. Effective fine-tuning requires
a well-structured dataset that includes both positive and
negative samples. Positive samples consist of trajectories
paired with their corresponding task instructions and motion
descriptions. This encourages the model to associate visual
motion representations with their correct task specification.
For the ith trajectory τi in the training set we generate
a single image Ii representing the trajectory based on the
chosen visual motion representation. To construct positive
samples for training, we pair a set of H images with
their corresponding task instructions and motion descriptions,
forming the set S+

train = {(I1, T1,M1), . . . , (IH , TH ,MH)},
where Ti and Mi are the task instruction and motion de-
scription for image Ii, respectively. To construct negative
samples for image Ii, we choose the Nneg least similar
motion descriptions. The similarity between motion descriptions
is calculated using SentenceTransformer [38] embeddings.
The set of negative samples is then constructed as S−

train =⋃H
i=1{(Ii, Ti,M

−
i,1), . . . , (Ii, Ti,M

−
i,Nneg

)}, where M−
i,j is the

jth least similar motion description to Mi. We set Nneg = 10
in our experiments. The full training dataset D is S+

train ∪S−
train.

Co-training with Human and Robot Data. Based on prior
work [37], fine-tuning VLMs requires a huge amount of training
data. Ideally, our dataset D would cover all motions that a robot
would execute across a wide variety of tasks. Unfortunately,
robot demonstrations are time-consuming and often difficult
to collect, which makes scaling the size of the dataset hard.
Moreover, robots’ physical constraints can prevent transfer or
generalization to unseen robots with different dynamics. On
the other hand, human demonstrations have a high degree of
freedom and are often easier and more intuitive to collect,
especially when looking for a diversity of motion. Thus, we
opt to train on a mixture of human and robot demonstrations,
Dh and Dr respectively. By doing so, we facilitate easy data
collection while also ensuring the downstream VLM is more
robust to embodiment and motion types.

IV. MOTIF-1K DATASET

To benchmark and improve VLMs and Video LMs for motion
understanding, we release the MotIF-1K dataset containing 653
human and 369 robot demonstrations across 13 tasks. As in
Fig. 1 and Fig. 4, each task has demonstrations for 2 to 5 distinct
motions which vary during the intermediate steps of a trajectory.
For instance, a motion’s path shape and semantic relationship
with nearby objects may be different across demonstrations.

This captures the diversity of how a task can be achieved,
reflecting the nuanced and complex motions present in real-
world scenarios. For instance, when shaking a boba drink, one
person might use vigorous vertical movements, while another
might use careful side-to-side movements to avoid spillage
after inserting a straw. Moving a cup near a laptop via the
shortest path is preferred if the cup is empty, but a detour
is necessary if the cup contains water. Motion diversity is
essential in grounded settings where motions need to adapt
to varying environmental contexts. Fig. 4 shows examples
of diverse motions. By collecting a diverse set of context-
dependent motions with different intermediate trajectories, we
ensure that our dataset challenges VLMs to consider the full
trajectory for success detection.
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Fig. 4: Trajectory Visualizations. We visualize two different motions
for solving the same task with the same embodiment.

A. Collecting Human and Robot Demonstrations

In this section, we explain how we collect human and robot
demonstrations. Visualizations are in Fig. 4. Our human demon-
strations are collected by six people to ensure ample variation
in motion. For robot data, a single expert teleoperates a Stretch
robot with a Meta Quest 3 VR controller for manipulation tasks
and a gamepad for navigation tasks. We record the agent’s joint
states and image observations with a fixed exocentric RGBD
camera for visual consistency. For the pick and place, stir, shake,
brush hair, and tidy hair tasks we collect trajectories in two or-
thogonal camera views to support future 3D motion understand-
ing using multiview images. In this paper, we treat observations
from different camera viewpoints as separate trajectories and
focus on effectively representing the agent’s motion in each
frame. Section IV-B explains how we annotate the trajectories
with task instructions and fine-grained motion descriptions.

After demonstrations are collected, we preprocess the image
observations using three different visual motion representation
methods (see Fig. 2):
• optical flow [20], [21]: visualizing the trajectories of all

visible keypoints with rainbow colors. For each keypoint, its
trajectory is drawn with a single color.

• single keypoint tracking (MotIF): visualizing a trajectory
of a single keypoint. For single point tracking on human
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Fig. 5: Motion Diversity. 10 canonical motions are described with blue arrows and their corresponding descriptions. In the blue box, motion
primitives are categorized based on the shape of the ideal path. Gray dashed arrows denote variants of the blue arrow, lying in the same
category. The orange box shows motions that involve grounding in the environment, where the relationship between the robot and an instance
in the environment is considered.

data, we use mediapipe [39] and track the center of the hand
pose. For robot data, we annotate 2D keypoints to identify
point of interests in the initial frame of each episode, which
is either a keypoint on the manipulated object or the robot’s
end effector. Then, we choose the keypoint nearest to the
point of interest. For both human and robot data, temporal
changes are shown with color gradient from white to green,
ending with a red circle.

• N -frame storyboard (N = 2, 4, 9): sampling N keyframes
and stacking those frames into a single image. We use K-
means clustering on the image embeddings of all frames
to sample keyframes that are sufficiently different in latent
space. Frame indices are annotated above each frame image.

B. Grounded Motion Annotations

In this section, we use “agent” to refer to either human
or robot demonstrating the task. We use human annotators
to label the motion in each video. While automated motion
labeling using proprioception has previously been used, it is
only applicable to short-horizon motions (<10 frames), whereas
our dataset contains long-horizon motions (>300frames). Com-
pared to previous datasets which do not capture any information
about how the motions are grounded in the environment or to
the user, we consider motion diversity in two different axes:
(1) path shape, and (2) semantic grounding in the environment.

Path Shape. As illustrated in Fig. 5, we first set a
vocabulary of motion primitives in terms of path shape;
direction and convexity of translation (e.g., move upward,
follow a convex curve), direction of rotation (e.g., make a
circular motion clockwise), and oscillatory movement (e.g.,
move up and down). Motion often consists of multiple motion
primitives with different path shapes, such as moving right
then downward, or moving right while oscillating vertically.
When annotating such motions in language, we first list the
primitives in the temporal order and prioritize the dominant
ones among those that happen simultaneously.

References to Objects and Humans. Another important
aspect of grounded motions are references to objects or humans
in the scene. The orange box in Fig. 5 illustrates five common
examples of motions in terms of semantic grounding. These
motions gain specific meaning in relation to objects or humans
in the environment. Based on the task specification regarding
an object (e.g., avoid damaging the laptop) or a user (e.g.,
focus brushing the bottom part of the hair that is tangled), an
agent’s motion can be distinguished accordingly. For instance,

The motion is correct/incorrect.

To solve this task, the agent should follow a 
motion description: <motion 1>, <motion 2>, …, 
then <motion N>. I'm showing you the final 
image of the agent's trajectory. The agent's path 
is shown as a line that changes color from white

The agent was asked to perform the 
following task: <task instruction>. 

to green as time goes on. The red dot shows the last position of the 
trajectory. Is the agent following the motion description or not? 
Express the answer as 1 or 0.

Fig. 6: Text Prompt Template shows how a motion composed of
multiple primitives is described in the text input of a VLM.

a motion of shaking salt over food is defined not only by the
path shape of the shaking movement but also by the spatial
relationship between the agent and the food. We use a set
vocabulary (e.g., move over, make a detour, get closer/farther,
follow path) to annotate the grounded motions in language.

The final motion descriptions in MotIF-1K are constructed
as combinations of descriptions in terms of path shape and
references to objects and humans. With the annotated task
instructions and motion descriptions, we construct text prompts
that could be used to describe the agent’s motion. Using this
text prompt and the image representation of the trajectory as
inputs, we train VLMs to predict the alignment between the text
and image (see Section III-C). For the example in Fig. 6, the
task instruction is “pick up the cup and place it to the lower left
of the laptop” and the motion description could be “move down-
ward and farther from the laptop, then move to the left”. Here,
two motion primitives, “move downward” and “move to the
left”, are combined with a grounded motion annotation,“move
farther from the laptop”. Given the text prompt and trajectory
representation I(τ) in Fig. 6, our fine-tuned VLM outputs a
binary value indicating whether the motion is correct or not.

V. EXPERIMENTS

In this section we seek to answer the following questions:
1) How does MotIF compare to start-of-the-art models? 2)
How important is robot data in understanding motion? and
finally 3) What is the effect of visual motion representation?
We compare our approach with state-of-the-art models
and assess the benefits of co-training on human and robot
data. We investigate the impact of different visual motion
representations. All models are evaluated on the test split of
MotIF-1K. See the project page for results in the validation
split, and visualizations of trajectories with MotIF outputs.
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(a) Comparison with SoTA off-the-shelf VLMs and Video LMs
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Fig. 7: Performance on MotIF-1K Test Split. (a) shows that our models outperforms state-of-the-art (SoTA) off-the-shelf models in the test
split. For reference, we also compare against the best-performing open-source baselines (LLaVA-1.6 7B for single-frame and VideoLLaMA2
for video LM) based on their F1 scores. (b) Performance improves with more robot demonstrations. Dashed lines indicate performance with
robot-only data. Performance of the model trained only with human data is shown as human+robot with #robot=0 (the leftmost pink triangle).
For simplicity, all metrics are in percentage. Error bars show standard deviation across five random seeds (12109, 20709, 42266, 73487, 84501).

Baselines. We evaluate against GPT-4o, GPT-4V [25], and
Gemini-1.5 Pro [26] as state-of-the-art API-based baselines.
We also compare to the best performing pre-trained open
LLaVA [37] models with various sizes (7B, 13B, 34B). To
evaluate different visual motion representations, we compare
our proposed single point tracking to full optical flow, N -frame
storyboard (N = 2, 4, 9), and a single-frame image. All learned
single-frame baselines are fine-tuned from the LLaVA-1.5
7B model [37], [40], which was pre-trained on the Vicuna
visual question answering (VQA) dataset [41]. For video LM
baselines, we choose to fine-tune VideoLLaMA2 7B [27] since
its pretrained model shows the highest F1 among multiple
video LMs [27], [29], [30], [28] on the MotIF-1K test split.

Training Details. We train on all human and 100 robot
demonstrations from MotIF-1K. For each demonstration, we
construct one positive and 10 negative samples of image-text
pairs. When fine-tuning the VLMs, we freeze the weights of
the pre-trained visual encoder, CLIP ViT-L/14 [42] with an
input size of 336px by 336px. We fine-tune the projection layer
and the language model in the VLM using low-rank adaptation
(LoRA) with cross-entropy loss for 30 epochs with a learning
rate of 5e−5 and a batch size of 32. Video LM baselines are
also fine-tuned using LoRA, with a learning rate of 2e−5 and
a batch size of 16. We use a single A100 GPU for fine-tuning.

Evaluation Set and Metrics. All learned models output a
binary label indicating whether or not the agent’s motion in the
image(s) align with the given task and motion descriptions. For
off-the-shelf models, we convert language responses into their
corresponding labels. We evaluate models on the validation
and test split of MotIF-1K containing 129 and 134 robot
demonstrations, respectively. The test split contains a set of
unseen trajectories which vary in camera viewpoints, motions,
tasks, and environment in comparison to the training and
validation split. Similar to the training data, we construct one
positive and 10 negative samples per demonstration. For each
experiment, we evaluate the performance of models using
precision (= TP/(TP + FP)), recall (= TP/(TP + FN))1, and F1
= 2/(1/precision + 1/recall). These metrics show the reliability

1TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative

and robustness of model outputs. High precision minimizes
false positives, and high recall ensures most valid motions are
identified. For all evaluations, we measure standard deviation
on performance with five random seeds with temperature 0.5.

How does MotIF compare to state-of-the-art VLMs?
Our model is developed by fine-tuning a 7B LLaVA model
with the MotIF-1K dataset. While LLaVA is pre-trained on
general VQA tasks answering questions given a static image,
we fine-tune the model using our proposed trajectory motion
representation. As shown in Fig. 7a, MotIF outperforms GPT-
4o, GPT-4V, Gemini-1.5 Pro, and LLaVA in all metrics in the
test split, by at least 162.9% in F1 and 265.4% in precision.
Even comparing with video LMs (GPT-4o, GPT-4V, Gemini-
1.5 Pro, and VideoLLaMA2) with 8 uniformly sampled frames
as input, MotIF shows significantly higher precision and F1
while achieving 89% recall. We include qualitative results in
the project page that show our model robustly works in data
out of training domain, such as unseen tasks and environments.

How does robot data impact performance? Fig. 7b shows
the positive transfer from human to robot data, by co-training
on full human data with 653 trajectories and an increasing
number of robot demonstrations. Simply adding 20 robot demos
improved performance significantly in recall by 151.5% and
slightly in precision by 3.3%. With 50 and 100 robot demos,
performance improves in all evaluation metrics. Interestingly,
co-training on human data and 20 robot demos outperforms
training solely on 20 robot demos by 63.8% and training on 100
robot demos by 6.7%. This implies that human data can be used
to learn representations of grounded motions which can transfer
to robots, despite the large embodiment gap. However, some
robot data is still necessary; training only on human data shows
very poor performance getting 33% recall which is worse than
random guess. This might be because fine-tuning exclusively on
human data specializes the model towards the human domain,
which may cause performance decrease on robot data. Adding
even a small amount of robot data significantly improves per-
formance by encouraging the model to learn more generalized,
embodiment-agnostic representations, demonstrating the crucial
role of robot data in achieving robust performance.
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Model Motion Representations Precision Recall F1 Score

Single
Frame
VLMs

- 97 ± 0.26 60 ± 0.87 74 ± 0.74
Optical Flow 97 ± 0.45 68 ± 0.27 80 ± 0.33
Storyboard (N = 4) 94 ± 0.20 76 ± 0.73 84 ± 0.46
Last Frame + Traj (Ours) 95 ± 0.14 89 ± 0.52 92 ± 0.30

Video
LMs

8 Frames [43] 88 ± 0.80 81 ± 0.28 85 ± 0.45
8 Frames + Traj [43] 91 ± 0.52 89 ± 0.28 90 ± 0.25

TABLE I: Motion Representation Comparison on MotIF-1K
Test Split. Among all methods, single-frame with trajectory
drawing demonstrates the highest F1 score. Our approach
identifies valid motions effectively and generalizes better than
baselines. Among the three storyboard representations (N =
2, 4, 9), we report the performance of the model that performs
the best in the test split (N = 4). Video LM baselines use
8 uniformly sampled frames per trajectory. The bottom row
shows the performance of using video with trajectory overlaid.

How does motion representation affect performance?
Table I shows the performance in MotIF-1K test split and
compares different visual motion representations trained on all
human data and 100 robot trajectories used in the co-training
experiment. Among the four motion representation methods
for a single-frame VLM, MotIF (Last Frame + Traj) shows
the highest F1 of 92%. While all methods show similarly
high precision scores, MotIF achieves 89% recall, which is
significantly higher than the single-frame baselines. Using
the last frame without any motion representation obtains the
lowest recall of 60%. Using full optical flow shows poor
generalization performance in the test split, performing worse
than MotIF. Perhaps the simplest baseline, inputting storyboard
that aggregates multiple frames in a single image, also fails
to outperform MotIF. Performance degradation with multi-
frame and optical flow is likely due to reduced image quality
from either reduced image resolution or visual clutter from
optical flow that covers relevant information. Fine-tuning an
8-frame video LM [27] improves recall and F1 over the single-
frame VLM without any motion representation. Still, the video
LM’s performance is worse than ours; single-frame VLM with
trajectory visualization. Once we add trajectory visualization
on the video frames, the video LM’s performance improves,
reaching near parity with MotIF. Results on both single-frame
VLMs and video LMs demonstrate the effectiveness of our
motion representation. However, training and running inference
on a video LM is much more expensive than on a single-frame
VLM, implying that our model is not only the best performing,
but also more cost-effective than video LMs.

VI. DISCUSSION

Summary. Task specification in robotics often goes beyond
simply stating what the objective is, and additionally consists
of how a task should be done. As a step in this direction,
we introduce a dataset, MotIF-1K, alongside a unique repre-
sentation method and training technique, MotIF. Our findings
demonstrate that our system can effectively provide assessments
of nuanced robotic actions. The MotIF-1K dataset consisting
of human and robot trajectories, captures the diverse ways

`
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Trajectory
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Motion 
Discriminator

(MotIF)

VLM Feedback (Optional)
“The generated trajectory does not match 

with the motion description.”

Trajectory Generation & Motion Discrimination

Policy

Task Instruction
“Spread parsley on pizza”

Motion
“Move to the left while 

making vertical oscillations”

Trajectory Proposal

Fig. 8: Refining and Terminating Robot Planning. MotIF
can close the loop of any existing open-loop controlled system
by determining success in executing proper motion and giving
this as a feedback to the system. We use an LLM as the policy
that generates the sequence of the robot joint states.
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(a) Ranking Example

Model Win Rate

GPT-4V 0.57
GPT-4o 0.65
Gemini 0.68
MotIF 0.82

(b) Win Rate

Fig. 9: Ranking Trajectories. We can use MotIF to rank
trajectories. (a) p(Ik|Γ,M) denotes how likely the motion in
the kth image corresponds to the given task instruction Γ and
motion description M . (b) Win rate evaluates each model by
measuring the prediction accuracy of pairwise rankings.

in which tasks can be executed. We propose MotIF that uses
this data to fine-tune open-source VLMs to detect a more
nuanced notion of success. Our results demonstrate that MotIF
can effectively assess success over these nuanced motions by
leveraging a simple visual motion representation; overlaying
the robot’s trajectory on the image observation, outperforming
all closed and open sourced VLMs and video LMs.

Failure Cases. MotIF works best when the instructions are
similar to those in the training dataset. Paraphrased instructions,
especially metaphorical or evocative expressions such as “gently
move, drawing an elegant curve” instead of verbose and precise
expressions such as “move to the right, following a concave
curve” have induced ambiguity in the model, often leading
to inaccurate success detection. We expect more advanced
pretrained language models could handle this in the future.

Applications of MotIF. MotIF can determine the success of
trajectories generated by any policy evaluating if the motions
align with the task instruction and motion description. This can
provide a signal for when to terminate an episode or to further
refine the policy. We include examples of the following uses
of MotIF on LLM generated policies [44]: MotIF as a success
detector (see App. Fig. 10 in project page), terminating or
adapting robot policies using MotIF output as feedback (Fig. 8),
and ranking trajectories (Fig. 9a). For refining and terminating
robot planning, we implement code-as-policies [44] on pizza
condiment spreading tasks using a real Stretch RE2 robot
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(see text prompts and qualitative results in project page). For
quantitative analysis on ranking trajectories, we compare single-
frame VLMs for inferring ranks on 45 pairs of trajectories. As
shown in Fig. 9b, we measure win rate, the ratio of correctly
ranked pairs among all pairs of trajectories. The table shows
that MotIF infers the ranks most effectively among all methods.

Ablation Study. We conduct an ablation study by fine-
tuning the vision encoder alongside the language model with a
learning rate of 5e−5. This results in slightly worse performance
(0.94± 0.0038 precision, 0.86± 0.0048 recall, and 0.90± 0.0040

F1) compared to our method, supporting the decision to keep
the vision encoder frozen during fine-tuning.

Limitations and Future Directions. One limitation of
MotIF is the dependency on 2D visual motion representations,
which might not capture all aspects of complex 3D motions.
Future work could incorporate RGB-D and multi-view images,
or 3D visual representations overlaid on the image for a more
comprehensive understanding of 3D space using our dataset.
Another direction is to use MotIF as a reward signal for
reinforcement learning. MotIF can act as a motion discriminator
when training RL policies that can potentially more accurately
reflect user preferences and contextual appropriateness. Future
work might create a VLM that outputs natural language
responses, which could be used to not only evaluate binary
success but also perform reasoning on robotic motions.
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