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Abstract—We introduce a novel framework that integrates
Semantic Digital Twins (SDTs) with Large Language Models
(LLMs) to enable adaptive and goal-driven robotic task execu-
tion in dynamic environments. The system decomposes natural
language instructions into structured action triplets, which are
grounded in contextual environmental data provided by the SDT.
This semantic grounding allows the robot to interpret object
affordances and interaction rules, enabling action planning and
real-time adaptability. In case of execution failures, the LLM
utilizes error feedback and SDT insights to generate recovery
strategies and iteratively revise the action plan. We evaluate our
approach using tasks from the ALFRED benchmark, demonstrat-
ing robust performance across various household scenarios. The
proposed framework effectively combines high-level reasoning
with semantic environment understanding, achieving reliable task
completion in the face of uncertainty and failure.

I. INTRODUCTION

Exploring dynamic environments has revolutionized how
robots interpret and execute complex tasks by leveraging
advanced natural language processing capabilities [10]. This
allows robots to decompose high-level instructions into action-
able steps and adapt dynamically [24], as seen in frameworks
like RePLan [23][25], which enables online re-planning in
response to unexpected obstacles. However, challenges such
as safety concerns and model hallucinations (where models
generate plausible but incorrect outputs) persist. To address
these, some work incorporates safety checks into the planning
process[4][12], while others use scene graphs to ground LLMs
in the physical environment[13], enhancing plan feasibility by
connecting language models to real-world contexts through
sensor data or computer vision.

Traditional Digital Twins [16] primarily focus on geomet-
ric and physical representations of the environment, such
as objects, meshes, and features, whereas Semantic Digital
Twins (SDTs) incorporate real-time data [26]. It mirrors a
building’s systems and components of DT by adding layer
of rich contextual and semantic information about dynamic
surroundings by integrating the objects’ text descriptions,
rules, and interaction properties[9][6].Various approaches have
been used to SDTs with LLM agent in affordance-based scene
representations to enable facilitate large-scale task planning in
complex environments[28][3].

The fusion of LLM and SDTs offers a promising path
to creating robotic systems capable of operating in dynamic

environments. The relevance of this collaboration is to support
a robot’s ability by effectively adjusting robot actions that
rely on real-time environmental feedback[18][25]. However,
the main challenge is to align the LLM response with the
semantic structures represented in SDTs, ensuring seamless
communication between the two systems. Our framework
addresses these challenges essential for bridging high-level
reasoning with real-world execution in dynamic environments.
This paper discusses the necessary preliminaries, including
related work on integrating LLMs and SDTs, workflow con-
struction, experimental setup, and evaluation results. Finally,
it concludes with potential directions for future research.

II. RELATED WORK

A. Leveraging Semantic Digital Twins for Task Planning

Recently, there have been advancements in how robots plan
tasks, especially when they don’t have all the information
[15, 27, 19]. AutoGPT+P [5] is an example of robots using
object affordances and large language models to make plans
even when certain objects are missing from the environment.
However, this method can be slow because it relies on ex-
ternal LLM models for affordance mapping. In contrast, our
approach employs Semantic Digital Twins (SDTs) that en-
capsulate object-action rules. This allows agents to plan tasks
in real time without the need for training or external object
reasoner, enhancing responsiveness and reducing reliance on
potentially unreliable external data sources.

B. Integrating LLMs and SDTs in Complex Environments

Approaches like SayPlan utilize 3D scene graphs to
ground LLM-generated plans in large-scale, multi-room
environments[20, 21, 2]. Similarly, the SMART-LLM frame-
work demonstrates using LLMs for multi-agent task planning,
translating high-level instructions into coordinated actions[11].
These methods, while scalable, often depend on extensive pre-
training and may struggle with real-time adaptability[1]. Our
method diverges by using SDTs that inherently understand
object-action relationships [17]. These enable agents to plan
and adapt in complex environments, facilitating immediate
responsiveness to dynamic changes and enhancing operational
efficiency.



Fig. 1: LLM-based task planning with a Semantic Digital Twin. The SDT provides real-time context, enabling the LLM to
generate and adapt action for goal-directed planning and execution.

C. Failure Detection and Recovery

Traditional failure recovery systems in robotics often com-
bine LLMs with SDTs to detect and adapt to errors[12].
For example, REFLECT [14] uses vision-language models
(VLMs) [8] conditioned on failure-related queries to generate
summaries and re-plan tasks. Recent work such as LoTa-
Bench has brought significant attention to evaluating language-
based task planners in failure-prone environments [7]. LoTa-
Bench provides a benchmark to assess how well LLM-based
agents detect, describe, and recover from execution failures. It
emphasizes querying large models during execution to reason
about error types and generate recovery strategies. While
LoTa-Bench has made valuable contributions in standardizing
failure scenarios and offering metrics for recovery evaluation,
its reliance on external querying and LLM-based introspection
introduces latency and potential inconsistency during run-time
execution.

III. METHODOLOGY

Enabling LLMs to operate in dynamic surroundings, re-
acting to changing robotic states and environments without
excessive computational latency, our framework leverages a
Semantic Digital Twin (SDT) to prompt a Large Language
Model (LLM), enabling it to decompose the natural language
description of a target task into a sequence of structured action
triplets. These triplets act as step-by-step execution guidelines
for the robot. Next, the agent grounds each action triplet
by selecting the most contextually appropriate parameters
to ensure smooth execution of the corresponding trajectory.
The agent also handles potential failure cases at this step by
leveraging an object-action knowledge semantic map to predict
suitable recovery actions.

A. Semantic Digital Twin

Our framework consists of two key Semantic Digital Twin
components: “Rules and Interaction Properties” and “Textual
Descriptions.” These components represent objects’ responses
to specific actions based on the surrounding context and



conditions. Specifically, we utilize a structured set of rules
describing object affordances and the consequences of partic-
ular interactions (Figure 10,Figure 11). For example: Bottle,
“Will break if subjected to sufficient force. Will fill up with
water if placed under a running water source.” We also define
a structured set of permissible actions. For example, the object
“Bottle” is annotated with the action properties [“Pickupable”,
“Fillable”, “Breakable”]. These affordances indicate that the
bottle can be picked up, filled (e.g., with water), or broken
under certain conditions. Performing such a link explicitly
to objects with corresponding action capabilities enables the
agent to create a concept map of a given task. By grounding
the task description with a concept map of SDT using LLMs,
we predicted the set of action triplets and later handled the
failure cases followed by the replanner. By grounding the task
description using a conceptual map derived from the Semantic
Digital Twin (SDT) and leveraging the reasoning capabilities
of Large Language Models (LLMs), we first predicted a
structured set of action triplets for task execution and later
handled the failure cases.

B. LLM-Powered Adaptive Planner

To provide Large Language Models (LLMs) with struc-
tured input for triplet prediction, we design an LLM-based
agent that operates in a multi-step process. First, the agent
scans the environment and filters out only the objects that
are relevant to the task at hand. Once these task-relevant
objects are isolated, the agent queries a SDT, which sup-
plies information about the possible actions that can be per-
formed on or with each object, along with the actionable
properties associated with them (e.g., whether an object is
fillable, openable, or can be picked up). With this contextual
understanding, comprising the filtered set of objects, their
actionable properties, and the predefined rules or instructions
that govern permissible actions along with previous task
examples, the LLM agent is equipped to generate a structured
output. Specifically, it predicts a sequence of action triplets,
where each triplet Triplets(HighLevelAction,Object1,Object2)
typically represents an action, the object it applies to, and
any associated parameters. The training examples are task-
context examples used to construct the prompt, providing the
LLM agent with guidance on the expected type of response.
Alongside this sequence, the agent also predicts the final goal
condition these actions aim to achieve.

After establishing general guidelines for the task in the
form of triplets, the next crucial step involves resolving the
specific parameters of the predicted action triplets. In this
context, resolving parameters means determining the most
appropriate objects to associate with each high-level action
in the sequence. To accomplish this, the LLM agent performs
step-by-step reasoning during action execution in the Action
Interpretation Engine. At each step, the agent takes into
account three key inputs: (1) the current state SDT of the
environment, (2) the task description, and (3) the history of
previously executed actions. Using this information, the agent
constructs a context-aware query to determine which object in

the environment is the most suitable for the following high-
level action in the triplet sequence.

C. Context-Aware Failure Handling and Replanning

If an action fails during execution, the Failure Resolver
intervenes and attempts to resolve the issue by predicting al-
ternative actions. It explores the environment and uses Action
Search Graph to generate a map of available action pairs as
shown in Figure 2 and Figure 3. The Failure Resolver Engine
also incorporates adaptive memory, which tracks previously
attempted solutions to avoid repeating the same ones for a
specific failure point.

The Context-Aware Failure Resolver is designed to analyze
errors and suggest appropriate recovery actions to address the
failure. Action Search Graph takes a set of object O, a list of
actions A, and filters the actions based on a condition function
Ca.

A′ = {a ∈ A | Ca(O, a) = T} (1)

Here O be a list of object descriptions generated from SDT,
A=[a1,a2,...,an] be a finite set of possible actions. Ca(O,a)
is a boolean-valued condition function, which returns true
if action a is valid for object O and false otherwise. The
filtered action set A consists of all actions a from the original
set A for which the condition function Ca(O,a) evaluates
to true. After generating all possible action pairs, they are
sent to both the adaptive memory and the query generator.
Adaptive memory is responsible for tracking the action pairs
that have been attempted and providing feedback on them. The
Query Generator then formulates a query (as illustrated in the
Figure 6) to the LLM agent to identify a potential solution.
If the suggested action pair fails to resolve the error, a new
query is generated, incorporating feedback from the previous
attempt.

Once all predicted triplets have been executed successfully,
the agent evaluates the task by comparing the current state with
the goal state. If the goal has not yet been achieved, it gathers
information on the actions performed so far, the current state
of the objects, the task description, and feedback on the unmet
goal conditions. This information is then used to prompt the
LLM agent to generate additional action steps (in the form of
triplets) needed to fulfill the remaining goal conditions.

IV. EXPERIMENT

We systematically evaluate our approach using examples
from the ALFRED dataset[22] build on ai2thor, a benchmark
designed for embodied AI agents that plan and execute low-
level actions to accomplish household tasks. These tasks
include actions such as cleaning a mug, cutting vegetables, and
cooling an apple in the refrigerator. For our evaluation, we se-
lected tasks from three categories: Clean&Place, Heat & Place,
and Cool & Place,as they present greater challenges in terms of
reasoning and interaction complexity. The examples are drawn
from the valid-seen split, which includes various interactive
actions such as SliceObject, OpenObject, and ToggleOnOb-
ject. The SDT is generated from the behavior of each type



Fig. 2: Overview of the Context-Aware Failure Resolver system: SDT Object descriptions are processed with a condition
function to filter possible actions from the action set (A). Filtered action pairs are passed to the Adaptive Memory and Query
Generator.

of object that appears in ai2thor. https://ai2thor.allenai.org/
We use an SDT-assisted LLM to break down the language
task description into triplets. Failure conditions are generated
by altering the environment’s ground truth from the dataset,
such as making an object dirty or placing it inside a closed
container.

V. RESULT AND DISCUSSION

We selected a subset of 14 tasks for evaluation that are
enactable by an agent. All tasks were successfully completed,
demonstrating the robustness of the framework. Success was
defined as achieving the specified goal condition. Although
all tasks ultimately succeeded, several experienced failure
cases during initial attempts. The system used an iterative
correction mechanism for each failure case to refine the plan.
For example, the task: Place a cooked potato slice in the
sink; experienced two failure cases, each of them resolved
in 1 iteration. We recorded the number of failure cases per
task and the number of iterations required to resolve each
failure across all tasks as shown in Table I. This allowed
us to assess the planner’s adaptability and the LLM’s ability

to generate corrective actions. Replanner iteration specifies
how often the agent invoked the replanner after completing
the sequence of predicted triplets in cases where the goal
condition was still unmet. This does not refer to replanning
after individual triplet failures but after executing all planned
steps and failing to reach the desired end state. A zero value
means that the predicted triplets were sufficient to achieve the
goal.The following Figure 4compares subgoal success rates
across three setups: using triplets generated by the planner
alone, using triplets with the failure resolver, and using triplets
with the failure resolver followed by the replanner.

Based on the results, we observe that most failure cases stem
from incorrect triplet predictions, while others are due to inap-
propriate object selection. For instance in task “Place a rinsed
knife inside a drawer”, the agent attempts to place a object
on target but fails because the chosen target lacks sufficient
space. In such scenarios, the agent needs to reconsider and
revise its object selection. For tasks where the goal condition
was not satisfied after initial execution, the Replanner Module
was triggered. This component analyzed the current state and
generated additional corrective actions using the LLM. We

https://ai2thor.allenai.org/


TABLE I: Summary of Task Execution Performance on for Various Household Tasks

Task IDs Task Description No. Failure Iteration Per Failure Replanner Iteration Success
1 Place a cooked potato slice in the sink 2 2 0 Yes
2 Put a cooked piece of potato in the sink. 0 0 2 Yes
3 Place a rinsed knife inside a drawer. 1 1 0 Yes
4 Slice an apple, cook it and set it on the counter 1 1 0 Yes
5 Place a clean knife in the drawer 0 0 0 Yes
6 Put a warm apple slice on the counter. 2 2 0 Yes
7 To cook a sliced tomato to throw it in the trash. 1 1 0 Yes
8 Put a chilled plate on the counter left of the sink. 2 2 0 Yes
9 Set a chilled bottle of wine on the table. 1 4 0 Yes

10 Put a clean mug under the coffee maker. 0 0 0 Yes
11 Put a clean cloth on the back of the toilet. 0 0 0 Yes
12 Put a wet sponge on the counter. 1 2 0 Yes
13 Cool a slice of bread and put it in the microwave. 0 0 0 Yes
14 Cut an apple, cool a piece and bring it to the table 1 1 2 Yes

recorded the number of replanning iterations required per task.
Notably, some tasks (such as the heating object examples) did
not require any replanning, indicating that the initial plan and
failure resolver were sufficient. However, if a goal condition
is not met—for example, the agent performs the ”heat the
potato” action but misses the ”slice” action, even though the
goal requires the object to be both hot and sliced—then the
replanner module steps in. It suggests the agent pick up a
knife and perform the slicing action, thereby fulfilling the goal
condition.

The purpose of our structured ”Rules and Interaction Prop-
erties” goes beyond encoding general object behavior. These
rules are explicitly designed to reflect the capabilities and
constraints of specific robot agents and simulation environ-
ments. For example. While an LLM may know that a bottle
can be picked up, filled, or broken, the actual feasibility of

Fig. 3: Semantic Digital Twin based on “Rules and Interaction
Properties” and “Textual Descriptions”

these interactions depends on the agent’s embodiment and the
simulation’s physics fidelity. A bottle labeled as ”Pickupable”
in our framework means that it is semantically and mechan-
ically feasible for a particular robot in a given simulator to
perform the action — accounting for reachability, gripper
type, force limits, etc. Our framework captures contextual
dependencies and interaction consequences that may not be
static or universally known. For example, whether an ob-
ject breaks may depend on the surface it’s dropped on, or
whether it fills depends on proximity to a simulated water
source — details that require structured specification rather
than reliance on general commonsense priors. Thus, the rules
provide grounded, operationalizable knowledge that is critical
for agents operating in simulated or real environments where
affordances are not just about what ”should” happen but what
can happen under defined system constraints.

In earlier research, failures were typically addressed by
summarizing the actions taken and then replanning the entire
task from the beginning[14]. In contrast, LOTA-Benchmark [7]
examined six failure cases and aimed to resolve them through
demonstration-based feedback and example-driven replanning.
None of these approaches consider SDT based on object-
actionable properties to predict context-aware actions. Our
proposed method addresses failure cases such as the absence of
visual grounding (e.g., attempting to interact with invisible or

Fig. 4: Comparison of task (in TableI) success with and
without Failure Resolver and Re-planner



non-present objects) and object selection errors (e.g., choosing
the wrong object). Moreover, the Action interpretation En-
gine helps execute the action triplets by determining whether
interacting with an object logically follows previous actions.
Its purpose is to ensure that each triplet is valid on its own
and contributes meaningfully to accomplishing the overall
task.This is achieved through the use of a Semantic Digital
Twin-based ActionSearch Graph, which enhances the agent’s
understanding of object properties and contextual relevance.

VI. CONCLUSION

This work introduces an adaptive framework that synergis-
tically combines Semantic Digital Twins (SDTs) with Large
Language Models (LLMs) to enhance robotic task planning
and execution in dynamic, real-world environments. By repre-
senting tasks as structured action triplets grounded in semantic
and contextual information, our system enables execution,
real-time error recovery, and iterative replanning. Experi-
mental evaluations using the ALFRED dataset validate the
effectiveness of our approach in handling complex household
tasks, even in scenarios involving uncertainty or unexpected
failures. Unlike prior methods, our framework leverages the
rich semantics of SDTs to inform context-aware decision-
making, eliminating reliance on external affordance mapping
or retraining. This integration bridges the gap between high-
level language reasoning and low-level robotic control, setting
a new direction for autonomous agents capable of reliable,
interpretable, and resilient behavior. Future work will explore
expanding the semantic representation of environments, and
incorporating multimodal sensory feedback for more nuanced
task understanding.
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APPENDIX

Fig. 5: Action-Triplets Prompting

Fig. 6: Example of Failure Query



Fig. 7: Robot fails to locate bottle in a Fridge(top-left) then it locate the bottle (top-right) after Failure resolver

Task: Set a chilled bottle of wine on the table. Action-Triplets:[[’PickupObject’, ’WineBottle’, 0], [’OpenObject’, ’Fridge’, 0],
[’PutObject’, ’WineBottle’, ’Fridge’], [’CloseObject’, ’Fridge’, 0], [’OpenObject’, ’Fridge’, 0], [’PickupObject’, ’WineBottle’,
0], [’CloseObject’, ’Fridge’, 0], [’PutObject’, ’WineBottle’, ’DiningTable’]]. Agent got an Error: “Target object not found
within the specified visibility...” during [’PickupObject’, ’WineBottle’, 0] Failure Resolver suggested solution actions are:
[(Crouch,Fridge| -01.30|+00.01|+00.99),(PickupObject,WineBottle|-01.38|+00.76|+02.20)]



Fig. 8: Robot tries to put knife in a drawer.

TASK : Place a rinsed knife inside a drawer. Robot tries to put a Knife in a small-size drawer with the action
(PutObject,Drawer|-00.05|+00.38|-01.32) but encounter a Error: “No valid positions to place object found.” Failure Resolver
suggested solution actions are: [(OpenObject,Drawer|-00.86|+00.58|+01.43),PutObject,Drawer|-00.86|+00.58|+01.43)]



Fig. 9: Tasks, along with their predicted triplets and summary of actions, leads to success after failure resolver and replanner.

In the case of Task: Put a cooked piece of potato in the sink, the robot heats the potato and puts it in the sink but forgets to slice
it. So, the replanner module includes two more actions([’PickupObject’, ’ButterKnife|-00.45|+00.92|+04.89’], [’SliceObject’,
’Potato|-04.08|+00.95|+02.68’]) at the end of the task to achieve the goal condition. Whereas in Task: Cut an apple, cool a
piece and bring it to the table, When robot try to execute actions-triplet [’PickupObject’, ’Knife’, 0] it encounter the Error:
“Target object not found within the specified visibility..”. In this case, the Context-Awareness Failure Resolver predicted that
the drawer would open first as the knife was in the drawer. The task’s goal is for the apple slice to be cold and on the
table, but the robot puts the apple slice on the countertop. Replanner suggested the following two actions:[’PickupObject’,
’Apple+01.38|+01.04|+03.33|AppleSliced-0’], [’PutObject’, ’DiningTable|-00.16|+00.00|+06.47’] to achieve the goal.



Fig. 10: Objects contextual interactions properties from ai2Thor https://ai2thor.allenai.org/

https://ai2thor.allenai.org/


Fig. 11: Objects actionable properties from ai2Thor https://ai2thor.allenai.org/

https://ai2thor.allenai.org/
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