
Scene Graph-Guided Proactive Replanning for
Failure-Resilient Embodied Agents

Che Rin Yu1 Daewon Chae1 Dabin Seo1 Yoonha Jang2 Sangwon Lee2 Hyeongwoo IM2 Jinkyu Kim1

1Korea University 2KT (Korea Telecom) R&D Center
{eyucherin, cdw098, lemonstar99, jinkyukim}@korea.ac.kr

{yooona.jang, lee.sangwon, im.hyeongwoo}@kt.com

Abstract—Replanning is essential for robust robotic behavior
in unexpected environments. However, most existing approaches
often initiate replanning only after failures occur, which can lead
to irreversible errors or inefficient recovery actions. Proactive
replanning—detecting and correcting potential failures before
execution—offers a promising alternative, yet current methods
often rely on manual triggers, dense supervision, or costly anno-
tations. In this work, we propose a novel proactive replanning
framework that detects and corrects failures at subtask bound-
aries by comparing scene graphs against those representing the
target precondition states for each subtask, triggering reasoning
and corrective planning when graph-level discrepancies arise.
This explicit symbolic and spatial grounding enables the system
to robustly identify subtle violations of subtask preconditions
that are not apparent from object identities alone. Our method
requires no dense annotations, minimizes reliance on large
language models (LLMs), and supports real-time replanning
without resetting the scene. Empirical results with the AI2-THOR
simulator demonstrate that our approach effectively identifies
semantic and spatial mismatches before execution failures occur,
enabling robust and efficient task completion across complex
manipulation scenarios.

I. INTRODUCTION

Autonomous robots are increasingly capable of perform-
ing complex tasks, promising transformative applications in
unstructured real-world environments [9, 3, 35]. However, to
operate reliably, robots must dynamically adapt their behavior
in response to unexpected changes, errors, or failures that arise
during task execution. This makes replanning a fundamental
requirement for robust autonomy, particularly in unpredictable
settings where failures may involve irreversible or safety-
critical consequences that cannot be mitigated through simple
recovery mechanisms.

However, building robust replanning capabilities for au-
tonomous systems remains fundamentally challenging, re-
quiring the following three components: (i) determining the
optimal time for replanning interventions in an efficient man-
ner, (ii) accurately diagnosing the root causes of failures or
potential failure conditions, and (iii) generating effective and
corrective action sequences that can recover progress toward
the task goal. Successfully addressing these components is
essential for enabling robots to operate safely and reliably
across diverse environments.

These challenges are further compounded in long-horizon
tasks, where failures often arise from subtle, often overlooked

…

Target Precondition Buffer

Subtask Start Subtask Start

Put Egg on CounterTop

Calculate Similarity

Score > threshold
: Resume

Pick up Pan

Calculate Similarity

Score < threshold : Replan

Navigate to Sink

#1 Reasoning

#2 Replanning
Clean the pan first, then try frying an egg

…

(b) Our Proposed Proactive Replanning Method

…

(a) Post-hoc Replanning Method

… … …

Put Egg on CounterTop

Clean Pan & Frying Egg

Task Finished

Pick up Pan

… … Post-hoc
Replanning

Frying Egg Clean Pan

Task Finished

A fried egg already cooked in a dirty pan
(attempt to clean it afterward)

A fried egg cooked in a clean frying pan

🙂

😢

Based on Comparison,
Dirty pan is not suitable for cooking the egg

As part of the replan, the pan is cleaned first

The egg is being fried in a dirty pan.
Task :

Cook Egg

Task :
Cook Egg

Fig. 1: (a) A conventional post-hoc replanning strategy, where
the agent reacts only after a failure occurs—e.g., detecting
an egg in a dirty pan and then replanning. In contrast, (b)
our proactive strategy monitors preconditions and replans
in advance—e.g., identifying the dirty pan beforehand and
cleaning it before cooking.

assumptions about spatial configurations [15, 29, 32]. For
instance, whether an object is properly placed, partially ob-
structed, or held can critically affect subtask feasibility. As a
result, robust failure reasoning and analysis require not only
high-level symbolic abstraction, but also fine-grained spatial
grounding that accurately captures both the relational and
geometric structure of the environment. This motivates the
development of structured spatial representations capable of
supporting reliable detection, reasoning, and replanning in
response to failures.

While some recent works have made notable progress
toward addressing these challenges, many approaches rely
mainly on post-hoc mechanisms (i.e., responding only after
failures emerge) [20, 11, 27, 31], predefined rule-based trig-
gers [33, 24, 16], or expensive human supervision [36, 28, 19,
5]. Consequently, they struggle to proactively prevent failures
in unexpected environments. These limitations highlight the
need for proactive replanning frameworks that can detect
potential failures before execution and adapt plans accordingly
in complex, unforeseen scenarios—much like how humans
recognize discrepancies between the current and expected
environment and adjust their actions before failures fully

materialize.
In this paper, we propose a proactive replanning strategy

in which an agent anticipates potential failures during the
execution of long-horizon tasks (e.g., cooking an egg), as illus-
trated in Figure 1. This approach contrasts with conventional
post-hoc replanning strategies that address failures only after
they occur (compare Figure 1 (a) and (b)). Specifically, at
the beginning of each sub-task (e.g., “picking up a pan”), the
agent compares the scene graph of the current environment
with an expected scene graph derived from prior successful
demonstrations. If the graph-level similarity falls below a
predefined threshold, an online replanning process is initiated.
This process generates a reasoning chain to identify the likely
cause of failure (e.g., “a dirty pan is unsuitable for cooking”)
and subsequently formulates corrective actions (e.g., “clean
the pan before frying the egg”), thereby avoiding the predicted
failure and enabling successful task completion. We validate
the effectiveness of our method using the AI2-THOR simu-
lator [17], demonstrating the agent’s ability to preemptively
avoid or recover from potential failures during task execution.
Our contributions are as follows:
• We propose a novel proactive replanning approach that

preemptively identifies and mitigates potential failures to
ensure reliable achievement of target objectives in long-
horizon tasks

• We present a lightweight scene graph-based failure antici-
pation method that, at the onset of each sub-task, assesses
whether the current scene is suitable for executing actions
necessary to achieve the overall task objectives.

• We demonstrate the effectiveness of our approach, showing
that it not only improves failure detection and task success
rates compared to baseline methods, but also enhances
failure reasoning quality as assessed by human evaluations.

II. METHOD

A. Problem Formulation

We consider the problem of executing long-horizon tasks,
each defined by a desired success condition Cgoal that describes
the final state the robot must achieve (e.g., “a mug filled
with coffee is placed on the table”). To achieve Cgoal, a
task T is decomposed into an ordered sequence of n high-
level subtasks, T = [a1, a2, . . . , an], where each subtask ai
corresponds to a semantically meaningful action (e.g., “grab
mug,” “put mug on coffee machine”). Each subtask is intended
to transition the environment closer to satisfying Cgoal, such
that the full execution of T leads to potential task completion
under expected conditions.

At execution time, the robot receives an RGB-D obser-
vation Ii of the environment immediately before executing
each subtask ai, from which it extracts a structured semantic
representation in the form of a scene graph Gi that captures
the entities and their relations present at that moment. To
assess task progress and detect potential failures, the robot
compares Gi to the expected scene graph Ĝi inferred from
the target precondition state Pi, which may be derived from

a successful (i.e., reference) trajectory, manual labels from
human annotation, or descriptions generated by large language
models (LLMs) based on commonsense knowledge. In our
setting, we leverage a dataset of reference trajectories D,
where each trajectory τ ∈ D specifies how a high-level task
T should proceed under expected conditions, including the
final success condition Cgoal and the ordered sequence of
subtasks [a1, a2, . . . , an] required for completion. From these
trajectories, we extract the expected precondition state for each
subtask, which serves as an intrinsic reference for comparison
during execution.

B. 3D Scene Graph Construction

To represent the robot’s semantic understanding of the envi-
ronment prior to executing each subtask, we construct a task-
informed scene graph from the robot’s RGB-D observation.
Each scene graph captures objects, their states, and spatial re-
lationships that are relevant to the current subtask context. Our
approach is inspired by the scene graph construction methods
proposed in REFLECT [20], which summarize multimodal
sensory inputs into symbolic structures for post-hoc failure
explanation, and RoboEXP [14], which introduces an action-
conditioned 3D scene graph that models interactive and spatial
relations between objects and actions.

Instead of generating scene graphs per frame, we construct
one at the start of each subtask to check if preconditions
are met. From an RGB-D image, we detect objects, segment
regions, and infer state attributes via CLIP [23]. Depth is used
to project the scene into a 3D point cloud, enabling spatial
reasoning. We extract pairwise object relations using spatial
heuristics, and use the gripper state to identify robot-object
interactions. The resulting graph Gi = (Vi, Ei) contains object
nodes, state attributes, spatial edges, and a subtask node for
context.

C. Expected Scene Inference

In order to evaluate whether the environment satisfies the
conditions for successful subtask execution, we infer expected
scene graphs from target precondition states. In this setting,
we assume a single reference trajectory generated offline,
serving solely as a static reference for expected subtask condi-
tions. During deployment, the robot independently constructs
scene graphs from its own perturbed sensory observations
and compares them against expected scene graph references
for discrepancy detection. If the mismatch exceeds a pre-
defined threshold, the system triggers proactive replanning.
This design not only ensures that failure reasoning remain
grounded in imperfect inputs, but also provides a consistent
and interpretable references for detecting deviations from
expected task progress without requiring dense supervision or
extensive manual annotations.

D. Graph-Based Discrepancy Analysis for Failure Detection

To assess whether the current environment satisfies the
expected conditions for subtask execution, we compare the
observed scene graph Gobs

i with the expected graph Gexp
i using

The discrepancy in the current observations shows that a cup is already inside the coffee
machine, which is not expected. This could prevent the robot from successfully placing the
mug inside the coffee machine, as the machine might not have space for another item. To
address this issue, an additional plan should be added to remove the cup from the coffee
machine before executing the (put_in,Mug,CoffeeMachine) action. This could involve a
sequence like (pick_up,Cup), (put_on,Cup,CounterTop) to clear the coffee machine for
the mug.

2. Reasoning about Anticipated Failure 3. Replanning

(put_on, Mug, CounterTop)
(pick_up, Cup)
(put_on, Cup, CounterTop)
(pick_up, Mug)
(place,mug,coffeeMachine)

4. Execution

1. Scene Graph (SG) Comparison

Ideal Setting

CoffeeMachine

Mug

Current Setting

CoffeeMachine

Mug

Cupnear near

on_top_of

Subtask : place(Mug, CoffeeMachine)

if score < threshold
: Replan Needed

(put_on, Mug,
CounterTop)

(pick_up, Cup) (put_on, Cup,
CounterTop)

(pick_up, Mug)

(place,mug,
coffeeMachine)

Input: [TASK_NAME], [SUBTASKS], [SUCCESS_CONDITION], [CURRENT_SG], [EXPECTED_SG]

Reasoning with LLM

Input : Original Plan, Reasoning Result

Calculate Similarity Score

Similarity Score

Replanning with LLM

(else : Resume)

Fig. 2: Our method consists of four steps: (1) compute scene graph similarity to assess subtask feasibility; (2) if below a
threshold, use an LLM to infer likely failure causes; (3) generate corrective actions using the original plan and reasoning; (4)
execute the revised plan.

a graph based discrepancy analysis algorithm. Each graph
consists of a set of object nodes, their associated attributes
(e.g., object states), and labeled edges denoting spatial or
functional relationships.

Node similarity Snode is computed as the average cosine
similarity between matched object nodes, using either CLIP
embeddings or semantic segmentation features that encode
both object class and state. To penalize extra or missing nodes,
the sum is normalized by the total number of unique nodes
across both graphs. When the similarity score S between the
observed and expected scene graphs falls below a threshold
(e.g., S < 0.9), the system predicts that the current subtask’s
preconditions are likely violated and initiates proactive replan-
ning. Further explanation on can be found in the appendix.

E. Replanning Strategy

Following the detection of a potential failure, our framework
decomposes the replanning process into two modular compo-
nents: a reasoning module and a replanning module, enabling
the robot to proactively adjust its plan before executing a
subtask that may otherwise result in failure, as illustrated in
Figure 2.The reasoning module is responsible for interpreting
the cause of failure. Upon detecting a discrepancy, natural
language descriptions of the observed and expected scene
graphs, along with the task goal and current subtask context,
are passed to a language-based reasoning model (i.e., GPT-4o).
The model is prompted to explain why the mismatch may lead
to task failure and what changes must be made to the current
situation or plan to recover from the failure.

The output of the reasoning module is then passed to the
replanning module, which is subsequently invoked to generate
recovery plans. This component takes as input the robot’s cur-
rent state, the list of available high-level actions, the observable
objects in the scene, and the reasoning-informed constraints
or suggestions. The replanning model uses this information to
generate a revised action sequence that corrects the issue and
restores progress toward the task goal. The new plan is then

executed online, enabling the robot to dynamically recover
from unexpected deviations or environmental constraints in
real time. III. EXPERIMENTS

Implementation and Evaluation Details. All experiments
are conducted in the AI2-THOR simulator [17] using GPT-
4o [1] for language reasoning. We construct a precondition
buffer by storing RGB-D observations before each subtask in
a successful demonstration. At runtime, scene graphs from
stored and current observations are compared to detect poten-
tial failures. We evaluate on complex tasks from the RoboFail
dataset [20], which includes long-horizon manipulation sce-
narios with diverse failure cases. Additional task details are
provided in Section C.

Effects of Proactive Replanning. To evaluate the effec-
tiveness of our proposed proactive replanning method, we
construct a benchmark of 10 tasks—extending the RoboFail
dataset—with scenarios specifically curated to test the robot’s
ability to avoid or recover from irreversible failures. We assess
performance using task success rate (SR) and Total Execution
Time (TET), which measures the average total duration of task
execution including time spent on replanning for all tasks. Our
method is compared against two baselines that rely on post-hoc
replanning with language-based reasoning. The first follows
the original REFLECT [20] framework, where replanning is
triggered only after the entire task has been completed. The
second adapts REFLECT to an online setting, performing
verification at the end of each subtask to detect failures. Both
baselines are reactive, differing only in whether replanning is
triggered at the end of the task or during execution. Further
results that illustrate this distinction can be found in Section D.

Analysis of Potential Failure Detection. As shown in Fig-
ure 3 (a), we validate our scene graph-based failure detection
method by comparing it with the following three alternative
approaches: (i) image-level comparison using CLIP [23] em-
bedding space, (ii) caption-based comparison in which scene
descriptions are generated by vision-language models, and

Task:
Boil Water

(a) Overview of Potential Failure Detection Approaches (b) Comparison of Performance

Subtask:
(Pick_up, Pot)

Scene-Graph based (Ours) Image Similarity based

Image Captioning based Object Detection based

D
et

ec
tio

n
M

od
ul

e

C
ap

tio
ni

ng
M

od
ul

e

In a kitchen, there is a
pot on a countertop.

In a kitchen, there is an item
possibly resembling a pot,
and a bread in front of it.

C
LI

P
Te

xt
En

co
de

r

C
os

in
e

Si
m

ila
ri

ty

Counter Top: 1
Pot : 1

Counter Top: 1
Pot : 1 / Bread : 1 O

bj
ec

t C
ou

nt

C
om

pa
ri

so
n

C
os

in
e

Si
m

ila
ri

ty

C
LI

P
Im

ag
e

En
co

de
r

Sc
en

e-
G

ra
ph

G
en

er
at

or

G
ra

ph
 S

im
ila

rit
y

A
lg

or
ith

m

G
ra

ph
 S

im
ila

ri
ty

Sc
or

e

Target Precondition States

Current Observation

Fig. 3: (a) Comparison of baseline methods and our scene graph-based approach for detecting discrepancies between current
and expected preconditions. Baselines include: (1) Image Similarity via CLIP embeddings, (2) Image Captioning via text
comparisons, (3) Object Detection via object count matching, and (4) our Scene Graph method using structured graph
analysis. (b) Failure detection and task success rates across all approaches.

TABLE I: Results of proactive replanning compared to alter-
native methods. (SR: Success Rate, TET: Total Execution
Time in seconds)

Method Type SR (%) ↑ TET (sec) ↓
REFLECT [20] Offline replanning after task 20 151.0
REFLECT-online Online replanning after failure 30 133.9
Ours Online replanning before failure 70 117.0
Baseline No replanning 0 84.6

(iii) object-level similarity scoring based on detected object
bounding boxes. Additional implementation details for each
method are provided in Section E. Each method receives the
same RGB-D observation at the beginning of a subtask and as-
sesses whether the current scene aligns well with the expected
conditions derived from a reference trajectory. If the level
of discrepancy exceeds a predefined threshold, the method
predicts a potential failure. To ensure a fair comparison, we
vary the similarity threshold values (90%, 85%, and 80%)
and report the average failure detection rates (FDR) and task
success rates (SR). Comprehensive results for all thresholds
are in Section F.

The evaluation results in Figure 3 (b) demonstrate that
our scene graph-based approach consistently achieves higher
failure detection rates (FDR) and task success rates (SR) com-
pared to all baseline methods. In contrast, approaches relying
solely on visual or semantic cues demonstrate substantially
lower performance. While the object detection-based method
provides object-level recognition, it lacks the spatial reasoning
necessary to evaluate the relational configurations critical for
subtask feasibility. These results highlight the importance
of incorporating explicit symbolic and spatial reasoning for
reliable proactive replanning.

Analysis of Anticipatory Failure Reasoning. Building on
the same setup for failure detection, we further evaluate the
effectiveness of our framework in reasoning about failure
cases. To ensure a fair comparison, we take episodes where
all methods correctly identified a failure and evaluate their
ability to explain the cause of that failure. For each method, we
generate a natural language explanation using a LLM (GPT-

4o) [1], conditioned on the method’s internal representation of
the scene, the current subtask, and the overall task goal. In our
approach, the LLM is prompted with structured scene graph
differences, whereas for the baselines, it is prompted with
either raw image embeddings, generated captions, or detected
object-level features.

81.7 15.0
Ours

Baseline
Tie16.7

16.7

83.3

76.7 6.6

3.3

Win Rate

Ours vs.

Ours vs.

Ours vs. Image Similarlity-based

Image Captioning-based

Object Detection-based

0 20 40 60 80 100

Fig. 4: Human evaluation on reasoning, compared to baseline
methods.

To assess explanation quality, we conduct a user study with
15 human evaluators. In each case, evaluators are provided
with the ground-truth failure cause and two candidate expla-
nations (one generated by our method and one by a baseline
method) and corresponding visual observations. Annotators
are instructed to compare the two explanations and select the
one better aligned with the ground-truth reasoning. If they find
both explanations equally valid or are unsure, they are allowed
to select both. More information about this is in Section H.
As shown in Figure 4, our method significantly outperforms
all baselines in explanation quality, underscoring the critical
role of spatial reasoning in failure understanding.

IV. CONCLUSION

We propose a proactive replanning framework that antic-
ipates and corrects failures during robotic task execution by
analyzing scene graph discrepancies. Our method enables early
failure detection and real-time recovery without relying on
dense supervision or frequent LLM calls. Experiments on the
RoboFail benchmark show that our approach significantly im-
proves both failure detection and task success, demonstrating
the importance of structured spatial reasoning for reliable and
adaptive robot behavior.

V. ACKNOWLEDGMENT

This work was the result of project supported by Korea
University - KT (Korea Telecom) R&D Center

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 3, 4, 9

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022. 7

[3] Erik Bauer, Marc Blöchlinger, Pascal Strauch, Ar-
man Raayatsanati, Curdin Cavelti, and Robert K
Katzschmann. An open-source soft robotic platform
for autonomous aerial manipulation in the wild. arXiv
preprint arXiv:2409.07662, 2024. 1

[4] Cristina Cornelio and Mohammed Diab. Recover: A
neuro-symbolic framework for failure detection and re-
covery. In 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 12435–
12442. IEEE, 2024. 7

[5] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya
Shivakumar, Percy Liang, and Dorsa Sadigh. No, to the
right: Online language corrections for robotic manipula-
tion via shared autonomy. In Proceedings of the 2023
ACM/IEEE International Conference on Human-Robot
Interaction, pages 93–101, 2023. 1, 7

[6] Yinpei Dai, Jayjun Lee, Nima Fazeli, and Joyce Chai.
Racer: Rich language-guided failure recovery policies for
imitation learning, 2024. 7

[7] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru
Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna, Dieter
Fox, Ajay Mandlekar, and Yijie Guo. AHA: A vision-
language-model for detecting and reasoning over failures
in robotic manipulation. In The Thirteenth International
Conference on Learning Representations, 2025. 7

[8] Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi,
Peter Young, Cyrus Rashtchian, Julia Hockenmaier, and
David Forsyth. Every picture tells a story: Generating
sentences from images. In Computer Vision–ECCV 2010:
11th European Conference on Computer Vision, Herak-
lion, Crete, Greece, September 5-11, 2010, Proceedings,
Part IV 11, pages 15–29. Springer, 2010. 7

[9] Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mobile
ALOHA: Learning bimanual mobile manipulation using
low-cost whole-body teleoperation. In 8th Annual Con-
ference on Robot Learning, 2024. 1

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 580–587, 2014. 7

[11] Yanjiang Guo, Yen-Jen Wang, Lihan Zha, and Jianyu
Chen. Doremi: Grounding language model by detecting

and recovering from plan-execution misalignment. In
2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 12124–12131. IEEE,
2024. 1, 7

[12] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents.
In International conference on machine learning, pages
9118–9147. PMLR, 2022. 7

[13] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. Inner monologue:
Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022. 7

[14] Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li,
Shubham Garg, Hooshang Nayyeri, Shenlong Wang, and
Yunzhu Li. RoboEXP: Action-conditioned scene graph
via interactive exploration for robotic manipulation. In
8th Annual Conference on Robot Learning, 2024. 2

[15] Amita Kamath, Jack Hessel, and Kai-Wei Chang.
What’s” up” with vision-language models? investigating
their struggle with spatial reasoning. arXiv preprint
arXiv:2310.19785, 2023. 1, 7

[16] Jinyeon Kim, Cheolhong Min, Byeonghwi Kim, and
Jonghyun Choi. Pre-emptive action revision by envi-
ronmental feedback for embodied instruction following
agents. In 8th Annual Conference on Robot Learning,
2024. 1, 7

[17] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Vander-
Bilt, Luca Weihs, Alvaro Herrasti, Matt Deitke, Kiana
Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An
interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474, 2017. 2, 3, 8, 9

[18] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy Zeng.
Code as policies: Language model programs for em-
bodied control. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 9493–9500.
IEEE, 2023. 7

[19] Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan,
Andrey Kolobov, and Ching-An Cheng. Interactive
robot learning from verbal correction. arXiv preprint
arXiv:2310.17555, 2023. 1

[20] Zeyi Liu, Arpit Bahety, and Shuran Song. REFLECT:
Summarizing robot experiences for failure explanation
and correction. In 7th Annual Conference on Robot
Learning, 2023. 1, 2, 3, 4, 7, 8, 9

[21] Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
Im2text: Describing images using 1 million captioned
photographs. Advances in neural information processing
systems, 24, 2011. 7

[22] Jia-Yu Pan, Hyung-Jeong Yang, Pinar Duygulu, and
Christos Faloutsos. Automatic image captioning. In 2004
IEEE International Conference on Multimedia and Expo
(ICME)(IEEE Cat. No. 04TH8763), volume 3, pages
1987–1990. IEEE, 2004. 7

[23] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PmLR, 2021. 2, 3,
9

[24] Shreyas Sundara Raman, Vanya Cohen, Ifrah Idrees, Eric
Rosen, Raymond Mooney, Stefanie Tellex, and David
Paulius. Cape: Corrective actions from precondition
errors using large language models. In 2024 IEEE
International Conference on Robotics and Automation
(ICRA), pages 14070–14077. IEEE, 2024. 1, 7

[25] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-
Chakra, Ian Reid, and Niko Suenderhauf. Sayplan:
Grounding large language models using 3d scene graphs
for scalable robot task planning. arXiv preprint
arXiv:2307.06135, 2023. 7

[26] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788,
2016. 7

[27] Gabriel Herbert Sarch, Yue Wu, Michael J. Tarr, and
Katerina Fragkiadaki. Open-ended instructable embodied
agents with memory-augmented large language models.
In The 2023 Conference on Empirical Methods in Natu-
ral Language Processing, 2023. 1, 7

[28] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z. Zhao, Archit
Sharma, Karl Pertsch, Jianlan Luo, Sergey Levine, and
Chelsea Finn. Yell at your robot: Improving on-the-fly
from language corrections. CoRR, abs/2403.12910, 2024.
1, 7

[29] Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin
Yu, Gholamreza Haffari, and Yuan-Fang Li. An empirical
analysis on spatial reasoning capabilities of large multi-
modal models. arXiv preprint arXiv:2411.06048, 2024.
1, 7

[30] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating
situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 11523–11530. IEEE, 2023. 7

[31] Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang,
Ying Nian Wu, Song-Chun Zhu, and Hangxin Liu.
LLM3: Large language model-based task and motion
planning with motion failure reasoning. In Multi-modal
Foundation Model meets Embodied AI Workshop @
ICML2024, 2024. 1, 7

[32] Yutaro Yamada, Yihan Bao, Andrew K Lampinen, Jungo
Kasai, and Ilker Yildirim. Evaluating spatial under-
standing of large language models. arXiv preprint
arXiv:2310.14540, 2023. 1, 7

[33] Zejun Yang, Li Ning, Haitao Wang, Tianyu Jiang,
Shaolin Zhang, Shaowei Cui, Hao Jiang, Chunpeng Li,

Shuo Wang, and Zhaoqi Wang. Text2reaction: Enabling
reactive task planning using large language models. IEEE
Robotics and Automation Letters, 2024. 1, 7

[34] Benjamin Z Yao, Xiong Yang, Liang Lin, Mun Wai
Lee, and Song-Chun Zhu. I2t: Image parsing to text
description. Proceedings of the IEEE, 98(8):1485–1508,
2010. 7

[35] Zhecheng Yuan, Tianming Wei, Shuiqi Cheng,
Gu Zhang, Yuanpei Chen, and Huazhe Xu. Learning to
manipulate anywhere: A visual generalizable framework
for reinforcement learning. In 8th Annual Conference
on Robot Learning, 2024. 1

[36] Lihan Zha, Yuchen Cui, Li-Heng Lin, Minae Kwon,
Montserrat Gonzalez Arenas, Andy Zeng, Fei Xia, and
Dorsa Sadigh. Distilling and retrieving generalizable
knowledge for robot manipulation via language cor-
rections. In 2nd Workshop on Language and Robot
Learning: Language as Grounding, 2023. 1, 7

[37] Bohan Zhai, Shijia Yang, Chenfeng Xu, Sheng Shen,
Kurt Keutzer, Chunyuan Li, and Manling Li. Halle-
control: controlling object hallucination in large multi-
modal models. arXiv preprint arXiv:2310.01779, 2023.
7

[38] Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun
Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and
Huaxiu Yao. Analyzing and mitigating object halluci-
nation in large vision-language models. arXiv preprint
arXiv:2310.00754, 2023. 7

APPENDIX A
RELATED WORKS

Strategies for Robotic Replanning. There has been a growing interest in replanning strategies in the robotics community where
approaches have been introduced based on predefined rule-based triggers [33, 24, 16, 4], human-in-the-loop strategies [36,
28, 5], post-hoc replanning strategies [20, 11, 27, 31], and large vision-language model-based methods [7, 6]. Human-in-the-
loop [36, 28, 5] strategies offer operational flexibility by allowing supervisory intervention during task execution, but they
introduce scalability challenges, which are impractical for fully autonomous operation, and impose significant labor costs.
Post-hoc replanning methods [20, 11, 27, 31], which analyze completed subtasks or trajectories to identify failure points, are
shown effective but unsuitable when corrective action must occur before a failure materializes. Moreover, these approaches
inherently struggle with irreversible failures where retrospective corrections are infeasible. Lastly, more recent methods leverage
vision-language models trained on failed trajectories [7, 6] show promise in recognizing failure scenarios, but require large-scale
annotations, incure data collection costs, and often fail to generalize to rare or unseen failure modes.

While some recent works have attempted proactive replanning [33, 24, 16, 4], they rely on pre-defined triggers and react
only to anticipated conditions, limiting their ability to handle novel or unforeseen situations. To address this, we present a
scene graph-based proactive replanning method, which is flexible and robust in long-horizon robotic tasks as it supports early
detection of potential failures and real-time corrective replanning.

Multi-modal Large Language Models (LLMs) in Robotics. Multi-modal large language models (LLMs) have been widely
used in robotic task planning [2, 13, 12, 25, 12], translating high-level instructions into action sequences or executable code [30,
18]. Similarly, Vision-Language Models (VLMs) interpret visual scenes [22, 8, 21, 34] and detect task-relevant objects [26, 10]
to extract visual information and align semantic cues in the environment. However, VLMs often overlook geometric and precise
spatial structures, and struggle with occlusions, spatial constraints, and geometric plausibility in complex scenes [15, 29, 32].
Moreover, LLMs and VLMs may hallucinate [38, 37] and cause errors while assessing environment states, where minor spatial
inconsistencies such as occluded objects, misplaced items, or obstructed targets, may silently violate task preconditions in
failure detection. Solely relying on high level semantics may not detect such failures, highlighting the need for explicit spatial
reasoning to detect discrepancies in real time. To address this, we propose a novel framework combining symbolic scene graph
comparisons with selective LLM reasoning for proactive failure detection, while also efficiently leveraging LLMs with minimal
inference overhead.

APPENDIX B
GRAPH-BASED DISCREPANCY ANALYSIS FOR FAILURE DETECTION

Node similarity Snode is computed as the average cosine similarity between matched object nodes, using either CLIP
embeddings or semantic segmentation features that encode both object class and state. To penalize extra or missing nodes, the
sum is normalized by the total number of unique nodes across both graphs:

Snode =
1

|Vexp ∪ Vobs|
∑

(vobs
i ,vexp

i)

cos
(
f(vobs

i), f(vexp
i)

)
(1)

Edge similarity (Sedge) and structural similarity (Sstruc) provide complementary views of structural alignment between graphs.
Specifically, Sedge measures how well spatial or functional relationships align by computing the ratio of correctly matched
edges to the total number of unique edges, while Sstruc assesses the consistency of node connectivity by measuring differences
in node degrees across matched pairs. The two metrics are defined as:

Sedge =
|Ematched|

|Eexp ∪ Eobs|
, Sstruc = 1− 1

N

N∑
i=1

|deg(vobs
i)− deg(vexp

i)|
D

(2)

We compute a graph similarity score S by averaging the three normalized components:

S = avg(Snode, Sedge, Sstruc) (3)

When the similarity score S between the observed and expected scene graphs falls below a threshold (e.g., S < 0.9), the
system predicts that the current subtask’s preconditions are likely violated and initiates proactive replanning.

APPENDIX C
ROBOFAIL TASK DESCRIPTIONS

The RoboFail dataset, introduced in REFLECT [20], is built in simulation using AI2-THOR [17]. It contains task execution
data where various failure cases are manually injected to study failure reasoning. The dataset includes 100 failure scenarios,
covering 10 distinct tasks with 10 failure cases per task. About 11% of failures in RoboFail—such as dropped objects—cannot
be detected purely from pre-execution observations, we handle these cases by evaluating failure detection immediately before
the next subtask, once the effects become visually apparent.

TABLE A1: Polished task descriptions for T1–T10 with corrected numbering and horizontal lines.

Task ID Task Name Description

T1 Boil Water A pot filled with water is placed on a stove
burner that is actively heating.

T2 Toast Bread A slice of bread is positioned inside a toaster
that is currently running.

T3 Fry Egg A cracked egg is cooking in a pan situated on a
stove burner that is turned on.

T4 Heat Potato A potato rests on a plate inside a microwave that
is operating.

T5 Make Coffee A clean mug filled with coffee is placed neatly
on the countertop.

T6 Store Egg A bowl containing an egg is stored securely
inside the refrigerator.

T7 Water Plant The houseplant has been watered and its soil
appears moist.

T8 Switch Devices A closed laptop is placed on the TV stand, and
the television is powered on.

T9 Make Salad A bowl of freshly sliced lettuce, tomato, and
potato is kept chilled in the fridge.

T10 Serve Warm Water A mug of water, heated in the microwave, is
served on the dining table.

APPENDIX D
DETAIL RESULTS ON PROACTIVE REPLANNING

Table A2 shows evaluation across a set of robotic tasks under diverse failure injection scenarios, especially in irreversible
settings. Each task is injected with a specific failure condition (i.e., incorrect object contents or unintended irreversible actions)
to examine the effectiveness of the system’s ability to replan. We compare our method against REFLECT [20] and a reactive
online variant (REF-online) inspired by the original reflect implementation. For each method, we record whether the task was
successfully completed with the new plan and the total execution time in seconds. The success rate is solely determined by
the final state of the execution, and whether it satisfied the task provided.

TABLE A2: Experimental results on various failure cases on different tasks. We compare our proposed replanning method
with REFLECT [20] and its online version (i.e., REF-online) we implemented based on the original code. Column Success
shows whether or not the method successfully replanned, avoiding the injected failure, and completed the task. We also record
the Total Execution Time (TET) in seconds.

Task Task Description Failure Injection Method Success TET

Water Plant Water the houseplant with
water

Pot is filled with wine in the
beginning of task execution.

REFLECT False 122
REF-online False 78

Ours True 43

Water Plant Water the houseplant with
water

Pot is filled with coffee in the
beginning of task execution.

REFLECT False 70
REF-online False 43

Ours True 43

Cook Egg Cook an egg on a clean pan Pan is dirty in the beginning of
the task.

REFLECT True 134
REF-online True 144

Ours False 159

Cook Egg Cook an egg on a clean pan
There is a potato on top of a
pan in the beginning of task
execution.

REFLECT True 192
REF-online True 143

Ours True 103

Cook Egg Cook an egg on a clean pan The robot cracked the egg inside
of the pot instead of the pan.

REFLECT False 108
REF-online False 120

Ours True 84

Make Coffee
Serve coffee on a clean
mug and place it on the
countertop

The mug is dirty in the
beginning of task execution.

REFLECT False 163
REF-online True 123

Ours False 123

Serve Whole
Egg

Serve a whole (uncooked)
egg in a bowl

The robot executed the action of
cooking the egg.

REFLECT False 80
REF-online False 74

Ours True 53

Serve Whole
Tomato

Serve an unsliced tomato
in a bowl

The robot executed the action of
slicing the tomato.

REFLECT False 120
REF-online False 111

Ours True 64

Serve Breakfast
(simple)

Serve an unsliced apple
and sliced lettuce

The robot executed the action of
slicing the apple.

REFLECT False 254
REF-online False 250

Ours True 257

Serve Breakfast
(simple)

Serve an unsliced apple
and coffee

The mug is dirty in the
beginning of task execution.

REFLECT False 267
REF-online False 253

Ours False 241

APPENDIX E
DETAILS ON BASELINE METHODS

To evaluate the effectiveness of our scene graph-based approach for proactive replanning, we compare it against three baseline
methods: (i) image similarity using CLIP [23] embeddings, (ii) caption-based comparison using vision-language models, and
(iii) object-level similarity scoring based on detected bounding boxes. All methods use the same RGB-D input information.

For the CLIP-based image similarity baseline, we first compute the similarity score between the expected and current images
using CLIP embeddings. If the score exceeds a predefined threshold, we pass both images to GPT-4o and prompt it to describe
the differences and identify potential causes of failure. Based on the model’s reasoning, we then trigger replanning through an
additional LLM call.

For the caption-based comparison baseline, we use GPT-4o [1] to generate captions for both the expected and current RGB
images. We then calculate the similarity between the two captions using CLIP embeddings. If the similarity exceeds a threshold,
we further prompt GPT-4o with both captions to reason about the differences and replan based on the generated explanation.

For the object-level similarity baseline, we use bounding box detections provided by the simulator [17]. We extract detected
objects from both the expected and current images and count the number of objects present in each scene. We compute a
similarity score based on the object counts, and if it exceeds a threshold, we pass the lists of detected objects into GPT-4o to

reason about discrepancies and trigger replanning accordingly.

APPENDIX F
FULL RESULTS ON FAILURE DETECTION RATE AND SUCCESS RATE

In our main experiment, we vary the similarity threshold values (90%, 85%, and 80%) and report the mean failure detection
rates (FDR) and task success rates (SR). Here, we provide the detailed results for each individual threshold setting to offer a
comprehensive view of the performance trends.

TABLE A3: Success rate of detection based method: Task results (T1–T10) and total scores across different threshold levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 10 10 50 50 30 30 30 80 80 40 41.0
85% 10 10 40 40 40 40 30 60 70 40 38.0
80% 10 10 40 30 40 40 30 50 50 40 34.0

Average 10 10 43.33 40 36.66 36.66 30 63.33 66.66 40 37.66

TABLE A4: Failure detection rate of detection based method: Task results (T1–T10) and total scores across different
threshold levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 50 40 30 30 30 30 20 20 30 20 30.0
85% 50 30 30 30 30 30 20 20 30 20 29.0
80% 50 30 30 30 30 30 20 20 30 10 28.0

Average 50 33.33 30 30 30 30 20 20 30 26.66 29.99

TABLE A5: Success rate of image similarity based method: Task results (T1–T10) and total scores across different Threshold
levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 80 40 50 70 50 40 70 70 30 20 52.0
85% 40 30 50 50 30 70 70 70 20 10 44.0
80% 40 50 50 40 30 50 70 70 20 10 43.0

Average 53.33 40 50 53.33 36.66 53.33 70 70 23.33 13.33 46.33

TABLE A6: Failure detection rate of image similarity based method: Task results (T1–T10) and total scores across different
Threshold levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 30 50 30 20 30 20 40 20 40 20 30.0
85% 20 50 30 10 20 20 30 20 40 10 25.0
80% 20 50 30 10 20 20 30 20 40 10 25.0

Average 23.33 50 30 13.33 23.33 20 33.33 20 40 13.33 26.65

TABLE A9: Success rate of our proposed method: Task results (T1–T10) and total scores across different Threshold levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 90 70 70 80 70 70 100 70 70 70 76.0
85% 90 70 70 80 70 70 100 70 60 70 75.0
80% 90 60 70 80 60 70 90 60 50 70 70.0

Average 90 66.66 70 80 66.66 70 96.66 66.66 60 70 73.67

TABLE A10: Failure detection rate of our proposed method: Task results (T1–T10) and total scores across different
Threshold levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 100 100 100 100 100 100 100 100 100 100 100.0
85% 90 90 100 90 100 90 90 80 100 90 92.0
80% 90 80 100 90 80 90 90 70 90 90 87.0

Average 93.33 90.0 100 93.33 93.33 93.33 93.33 83.33 96.66 93.33 92.97

TABLE A7: Success rate of image captioning based method: Task results (T1–T10) and total scores across different threshold
levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 80 40 50 70 50 40 70 70 40 60 57.0
85% 70 40 40 50 30 30 60 70 20 40 45.0
80% 70 40 40 40 30 30 50 70 20 30 42.0

Average 73.33 40 43.33 53.33 33.33 33.33 60 70 26.67 43.33 47.6

TABLE A8: Failure detection rate of image captioning based method: Task results (T1–T10) and total scores across different
threshold levels.

Threshold T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

90% 80 60 70 80 60 60 70 30 70 60 68.0
85% 70 50 60 70 40 40 60 20 50 40 48.0
80% 70 50 60 70 40 30 60 20 50 40 47.0

Average 73.33 53.33 63.33 73.33 46.67 43.33 63.33 23.33 56.67 46.67 54.0

APPENDIX G
ADDITIONAL QUALITATIVE EXAMPLES OF FAILURE REASONING

In this section, we illustrate additional results of failure reasoning on baseline methods and ours. Figure A1 shows reasoning
on ‘toast bread’ task, where failure occurs at subtask ‘(pick up, Knife)’ because there is a pot blocking the knife. Figure A2
shows reasoning on ‘heat potato’ task, where failure occurs at subtask ‘(pick up, Potato)’ because it navigated to an apple and
trying to pick up an apple instead of a potato. Our method captures spatial information from scene graph to resolve possible
failure at current scene.

Target Precondition State
Task: Toast Bread

Subtask: (pick_up, Knife)

Current Precondition State

⚠Pot is blocking the knife!

Detection Metric: The discrepancy between the expected and current frames
is the absence of one 'Cabinet', one 'Sink', and one 'Faucet' in the current
frame, which could cause the robot to fail in achieving the task of picking up
the knife if it relies on the sink or faucet for positioning or orientation. To
address this, the robot's plan could be refined by updating its environment
model to account for the missing objects and adjusting its navigation and
manipulation strategies to rely on other available landmarks or objects.
LLM Caption Differences: The robot might fail to pick up the knife because
the current caption shows a coffee machine on the left, which could obstruct
access to the knife. Additionally, the absence of a toaster in the current caption
means the robot cannot place the bread slice inside or turn it on. To fix this,
the robot should first ensure the knife is accessible by moving any obstructing
objects and locate or place a toaster on the counter.
VLM Image Differences: In the current state, the knife is inside a pot,
making it inaccessible for the robot to pick up. Additionally, the toaster is
present, but there is no visible bread or sliced bread near it, which is necessary
for the task of placing bread inside the toaster and turning it on. To fix this,
the robot should first remove the knife from the pot and ensure that the bread
is sliced and placed near the toaster before attempting to complete the task.
Ours: The current environment has a discrepancy where the pot is blocking
the knife, preventing the robot from successfully executing the action to pick
up the knife. This obstruction is not accounted for in the expected scene
graph, which assumes the knife is accessible. To address this issue, an
additional plan should be added to move the pot out of the way before
attempting to pick up the knife. This could involve a subtask like
'(move_obj, Pot, CounterTop-2)' to ensure the knife is accessible
for the robot to pick up.

Fig. A1: Additional examples of failure reasoning, comparing ours to other baseline methods.

Current Precondition StateTarget Precondition State
Task: Heat Potato

Subtask: (pick_up, Potato) ⚠Picking up apple instead of potato!

Detection Metric: The robot is likely to fail in achieving the task of picking
up the potato and placing it on a plate inside a microwave because the current
frame lacks essential objects such as the Potato, Microwave, and Plate, which
are present in the expected frame. To address this issue, the robot's plan
should be refined to include a verification step that ensures the presence of
necessary objects before attempting the task, and if discrepancies are detected,
it should trigger a search or navigation routine to locate the missing items or
adjust the task to the current environment.
LLM Caption Differences: The robot might fail to achieve the task because
the potato is on a table with a plate and bowl, rather than on a countertop near
a microwave. To fix this, the robot should first locate the potato, place it on a
plate, and then find and use a microwave to complete the task.
VLM Image Differences: The discrepancy between the images is that the
potato is on the countertop in the first image, while in the second image, a
different object (possibly a red item) is on a table, and there is no visible
microwave or plate. This could cause the robot to fail in picking up the potato
and placing it on a plate inside a microwave, as the necessary objects are not
in the expected locations. To fix this, the robot should first locate the potato,
ensure a plate is available, and identify the microwave's location before
proceeding with the task.
Ours: The observed discrepancy shows that the robot is detecting an ‘apple’
in place of the expected ‘potato’, indicating that the potato may either be
missing from the scene or has not been accurately identified by the robot’s
sensors. This misperception could result in failure to complete the current
subtask of picking up the potato. To mitigate this, the robot could incorporate
an additional verification step to ensure the potato is present and correctly
recognized before attempting to pick it up. This could involve adding a
subtask such as ‘(scan_for_obj, Potato)’ to confirm the potato’s
presence and accurate identification within the environment.

Fig. A2: Additional examples of failure reasoning, comparing ours to other baseline methods.

APPENDIX H
DETAILS ON HUMAN EVALUATION

As described in our main paper, we conducted a human evaluation of failure reasoning using 15 human annotators.
Specifically, we collected 13 scenarios in which both our method and the baseline successfully detected failures. For each
scenario, we randomly assigned five annotators to perform the evaluation.

Each annotator was instructed to compare the reasoning results from our method and the baseline, given the ground-truth
failure reason and visual observations. As shown in Figure A3, the annotators were provided with labeling instructions along
with the following information: (i) the expected scene (i.e., what the robot should observe before executing the subtask), (ii)
the actual scene (i.e., what the robot observes in the perturbed environment), and (iii) the ground-truth reason for failure.

You will be given a subtask within a task. Following the task explanation, you will
also be given ground truth (GT) explaining the reason why the subtask is failing at
the moment in the image on the right.

You are also given two images for each question.

•Image 1 (left) shows expected scene, where the robot can ideally perform the
given subtask given this frame of interest.
•Image 2 (right) shows the actual current scene, where the robot actually sees and
might have potential failure when executing the given subtask.

Given the above, you are expected to choose between 2 explanations, each
providing a possible reason for failure based on the visual discrepancy. Choose
the explanation that better aligns with GT and also better analyzes the given
subtask and the current image frame.

Though 'Tie' is permitted, it should be avoided unless absolutely necessary.

⚠ Important: Prioritize subtask-level failures before considering overall task
failures. Focus on what the robot is trying to do right now in this moment. If both
explanations mention task-level issues, still prefer the one that better analyzes
the immediate subtask.

(a)

Select one that is most similar to the GT failure explanation

Task: Boil Water
Subtask (Current Action to execute right at this time step): Pick Up Pot
GT: The robot was supposed to pick up the pot but mistakenly identified a bowl as a pot.

(b)

The discrepancy between the images is that in the current state, a loaf of bread is
obstructing access to the pot on the countertop. This obstruction could prevent the
robot from successfully picking up the pot. To resolve this, the robot should first move
the bread to a different location, ensuring the pot is accessible, then proceed to fill the
pot with water and place it on the stove burner

The current environment has a bread that is blocking the pot, which is not accounted for
in the robot's plan. This obstruction could prevent the robot from successfully picking up
the pot as intended. To address this issue, an additional plan should be added to remove
the bread from the pot before executing the '(pick_up, Pot)' action. This could involve a
subtask like '(pick_up, Bread)' followed by '(place_on, Bread , Counter)' to clear the pot for
the robot to proceed with its task.

a)

b)

Expected Current

Fig. A3: Human survey labeling interface: (a) instructions and (b) an example questionnaire

APPENDIX I
ABLATION STUDIES

We conduct ablation experiments to quantify the contribution of each component in the scene graph comparison process and
to assess its impact on failure detection performance. As shown in Table A11 (top), removing the subtask node during scene
graph construction leads to a moderate drop in failure detection performance, highlighting the importance of understanding the
subtask context. Omitting node matching and edge matching results in even larger decreases, indicating that both object identity
alignment and relational structure are critical for accurately identifying potential failures. Removing structural matching also
degrades performance, although to a lesser extent. Overall, the full model achieves the highest failure detection rate of 92.97%.

Furthermore, as shown in Table A11 (bottom), task success rates drop from 73.67% to 37.67% when the reasoning module is
removed, highlighting its critical role in effective replanning. Without reasoning, the system struggles to interpret the causes of
failure and devise corrective actions that are properly aligned with the environment’s constraints and the task’s goals. Instead,
it resorts to less informed or naive replanning strategies that often fail to resolve underlying issues, resulting in unsuccessful
task completions.

TABLE A11: Failure detection and task completion results.

Failure Detection Task Completion
Method FDR (%) ↑ Method SR (%) ↑
Ours 92.97 Ours 73.67
w/o Subtask Node 84.33 (8.64% ↓) w/o Reasoning 37.67 (36.0% ↓)
w/o Structural Matching 82.67 (10.3% ↓)
w/o Node Matching 74.67 (18.3% ↓)
w/o Edge Matching 70.33 (22.6% ↓)

APPENDIX J
LLM PROMPTS USED IN OUR EXPERIMENTS

In this section, we provide the LLM prompts used in our experiments. Table A12, A13, A14 and A15 show the prompts
used during the reasoning stage for the graph-based discrepancy algorithm, image similarity-based method, captioning-based
method, and object detection-based method, respectively. Table A16 presents the prompt used for replanning after the reasoning
stage.

TABLE A12: The prompt used to perform reasoning in our method.

Method: Graph Based Discrepancy Algorithm (Ours)

System Prompt: You are given the current robot state, the goal condition, the current scene graph, the expected scene graph, and the robot plan. Briefly
explain what is wrong with the current environment that could cause the robot to fail in 1-2 sentence. Also in 1-2 sentences, describe any additional plans to
be added to the current plan that could help the robot successfully execute the task

User Prompt:
The robot task is to [TASK NAME]. The sequence of subtasks to achieve this goal is [SUBTASKS]
The task is considered successful if [SUCCESS CONDITION]
Here’s the robot observation before executing the current subtask [SUBTASK]: [CURRENT OBSERVATION]. Here are the expected observations
[EXP OBSERVATIONS]
Q: The node represents the objects in the scene and their states whereas the edges represent the relationship between the objects. Carefully consider the
current scene graph and the expected scene graph and determine what could be wrong with the environment that could cause the robot to fail in executing
the current subtask or the entire plan.
A:

TABLE A13: The prompt used to perform reasoning in image similarity based method.

Method: Image Similarity

System Prompt: You are given the current robot state, the goal condition, the difference between expected and current environmental states, and the robot
plan. Briefly explain what is wrong with the current environment that could cause the robot to fail in 1-2 sentence. Also in 1-2 sentences, describe any
additional plans to be added to the current plan that could help the robot successfully execute the task

User Prompt:
The robot task is to [TASK NAME]. The sequence of subtasks to achieve this goal is [SUBTASKS]
The task is considered successful if [SUCCESS CONDITION]
Here’s the robot difference in observation between expected and current states before executing the current subtask [SUBTASK]:[IMAGE DIFFERENCE].
Carefully consider the difference and determine what could be wrong with the environment that could cause the robot to fail in executing the current subtask
or the entire plan.
A:

TABLE A14: The prompt used to perform reasoning in image similarity based method.

Method: Image Similarity

System Prompt: You are given the current robot state, the goal condition, the difference between expected and current environmental states, and the robot
plan. Briefly explain what is wrong with the current environment that could cause the robot to fail in 1-2 sentence. Also in 1-2 sentences, describe any
additional plans to be added to the current plan that could help the robot successfully execute the task

User Prompt:
The robot task is to [TASK NAME]. The sequence of subtasks to achieve this goal is [SUBTASKS]
The task is considered successful if [SUCCESS CONDITION]
Here’s the robot difference in observation between expected and current states before executing the current subtask [SUBTASK]:[IMAGE DIFFERENCE].
Carefully consider the difference and determine what could be wrong with the environment that could cause the robot to fail in executing the current subtask
or the entire plan.
A:

TABLE A15: The prompt used to perform reasoning in detection based method.

Method: Object Detection

System Prompt: You are given the current robot state, the goal condition, the current detected objects in the scene, the expected objects detected in the scene
,and the robot plan. Briefly explain what is wrong with the current environment that could cause the robot to fail in 1-2 sentence. Also in 1-2 sentences,
describe any additional plans to be added to the current plan that could help the robot successfully execute the task

User Prompt:
The robot task is to [TASK NAME]. The sequence of subtasks to achieve this goal is [SUBTASKS]
The task is considered successful if [SUCCESS CONDITION]
Here’s the robot observation before executing the current subtask [SUBTASK]: [CURRENT DETECTION]. Here are the expected observations [EX-
PECTED DETECTION]
Q: Carefully consider the differences in detected items and determine what could be wrong with the environment that could cause the robot to fail in executing
the current subtask or the entire plan.
A:

TABLE A16: The prompt used to perform replanning in our experiment.

System Prompt:
[Available actions]. Provide a recovery plan using ONLY the available actions to achieve the SUCCESS STATE after a failure. Follow these rules STRICTLY:

1. Available Actions: pick up, put in, put on, open, close, toggle on, toggle off, slice, crack, pour

2. Constraints:
- Robot has ONE gripper (can hold only ONE object at a time).
- NEVER skip required steps (e.g., ’pour’ for cleaning, ’toggle on’ for cooking).

3. Replan Logic:
- Start from the CURRENT PLAN state (DO NOT restart from initial plan unless failure occurred at step 1).
- The SUCCESS STATE [SUCCESS CONDITION] MUST be achieved—verify ALL steps against it.

4. Output Format:
- ONLY return a list of actions (NO descriptions, Python, symbols, or extra text).
- Follow the EXACT format of the initial plan (e.g., ’(action, object, target)’).

![IMPORTANT] PRIORITIZE THE SUCCESS STATE: Every action must DIRECTLY contribute to achieving [SUCCESS CONDITION].

User Prompt:
Task: [TASK NAME]

Initial plan: [PLAN]

Failure reason: [FAILURE REASON]

SUCCESS Condition: [SUCCESS CONDITION]

Current plan the robot is about to execute: [CURRENT PLAN]

Current observation:
- Objects: [OBJECTS IN SCENE]

Constraints:
- Single-arm robot: Gripper must be EMPTY to pick up objects.

Correction plan (ONLY ACTIONS, NO COMMENTS):

APPENDIX K
LIMITATIONS

Though we demonstrate the effectiveness of preemptively identifying failures through scene graph discrepancies, several
limitations remain. Our evaluation was limited to failure cases provided by the RoboFail dataset, which may not capture
the full range of possible failure modes. It is therefore worth applying our proposed method to more diverse scenarios to
assess its generalizability. Moreover, while our current experiments are conducted in simulation, evaluating the method on
real robotic platforms is a critical next step. Although real-world deployment poses practical challenges, we are excited about
future implementations on physical robots to validate the system’s effectiveness beyond simulated environments.

	Introduction
	Method
	Problem Formulation
	3D Scene Graph Construction
	Expected Scene Inference
	Graph-Based Discrepancy Analysis for Failure Detection
	Replanning Strategy

	Experiments
	Conclusion
	Acknowledgment
	Appendix A: Related Works
	Appendix B: Graph-Based Discrepancy Analysis for Failure Detection
	Appendix C: RoboFail Task Descriptions
	Appendix D: Detail Results on Proactive Replanning
	Appendix E: Details on Baseline Methods
	Appendix F: Full Results on Failure Detection Rate and Success Rate
	Appendix G: Additional Qualitative Examples of Failure Reasoning
	Appendix H: Details on Human Evaluation
	Appendix I: Ablation Studies
	Appendix J: LLM Prompts Used in Our Experiments
	Appendix K: Limitations

