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Abstract—Task-Oriented Grasping (TOG) presents a
significant challenge, requiring a nuanced understanding
of task semantics, object affordances, and the functional
constraints dictating how an object should be grasped for
a specific task. To address these challenges, we introduce
GRIM (Grasp Re-alignment via Iterative Matching), a
novel training-free framework for task-oriented grasping.
Initially, a coarse alignment strategy is developed using a
combination of geometric cues and principal component
analysis (PCA)-reduced DINO features for similarity scor-
ing. Subsequently, the full grasp pose associated with the
retrieved memory instance is transferred to the aligned
scene object and further refined against a set of task-
agnostic, geometrically stable grasps generated for the
scene object, prioritizing task compatibility. In contrast
to existing learning-based methods, GRIM demonstrates
strong generalization capabilities, achieving robust perfor-
mance with only a small number of conditioning examples.
Project Page

I. INTRODUCTION

Robotic manipulation remains a fundamentally chal-
lenging problem, particularly when it involves grasping
objects in a manner that is appropriate for a specific
task. The ability to reliably grasp a wide variety of
objects is essential—not merely for achieving geometric
stability, but for enabling purposeful interaction. Task-
Oriented Grasping (TOG) goes beyond conventional
grasping strategies by requiring a deeper understanding
of object affordances, task semantics, and the functional
requirements that dictate how an object should be held
to effectively accomplish a given task. Despite growing
interest in Task-Oriented Grasping (TOG), the scarcity of
task-annotated grasping datasets (e.g., Murali et al. [20])
limits the scalability of training-based methods. These
approaches also struggle to generalize to novel object
instances and categories, posing a major challenge for
real-world deployment. To overcome these limitations,
we present GRIM (Grasp Re-alignment via Iterative
Matching), a novel training-free framework that adopts
a retrieve-align-transfer (RAT) strategy. GRIM builds
a dynamic memory of object-task interactions using
purely synthetic data, in-the-wild images, and human
demonstrations, enabling scalable and data-efficient task-

oriented grasping. Given a novel scene object and a tar-
get task, GRIM first retrieves a semantically and visually
similar object-task example from its memory. This re-
trieval is driven by a joint similarity metric that integrates
learned visual representations from DINO embeddings
[22] and semantic embeddings of task descriptions from
CLIP [25]. Once a relevant memory instance is retrieved,
its object point cloud is aligned to the scene object using
a hybrid alignment strategy. This process begins with
a coarse alignment based on geometric cues and PCA-
reduced DINO feature scoring, followed by fine-grained
refinement using the classical Iterative Closest Point
(ICP) algorithm [2]. Finally, the grasp pose associated
with the retrieved memory instance is transferred to the
aligned scene object and further refined by evaluating
it against a set of task-agnostic, geometrically stable
grasps generated for the scene object, prioritizing task
compatibility.

The main contributions of this research are:

1) A flexible memory construction pipeline that in-
tegrates object-task experiences from diverse data
sources, including AI-generated videos, web im-
ages, and human demonstrations.

2) A robust and training-free alignment strategy that
leverages learned dense features for semantically-
aware coarse alignment, followed by precise ICP
refinement, suitable for aligning novel objects
where only partial or noisy observations may be
available.

II. RELATED WORKS

As robots are increasingly expected to interact mean-
ingfully with their environments, Task-Oriented Grasp-
ing (TOG) has emerged as a vital research direc-
tion—focusing not just on grasp stability, but on enabling
task-relevant manipulation. Research in this area has
largely followed two paths: analytical methods and in-
creasingly dominant data-driven techniques. Murali et al.
[20]

https://grim-tog.github.io/


Fig. 1: The figure shows our memory creation pipeline. The Hand-Object Reconstruction block is built on Wu et al.
[32]

A. Data-Driven Approaches

Early data-driven TOG efforts, such as those by Dang
and Allen [3] and Liu et al. [12], focused on learning
class-task-grasp relationships directly from data. How-
ever, as noted by Tang et al. [28], these methods often
yielded unsatisfying performance due to the absence of
external knowledge. Recognizing this, a significant body
of work has explored integrating semantic knowledge.
For instance, Song et al. [27] and Huang et al. [6]
employed Bayesian Networks over constructed semantic
KBs, while Ardón et al. [1], Zese et al. [33] and Liu
et al. [13] utilized probabilistic logic for reasoning over
semantic attributes. These approaches often necessitate
grounding geometric information to pre-defined semantic
representations and grapple with the scalability of their
knowledge bases.

A pivotal challenge, as highlighted by multiple sources
Tang et al. [28], Murali et al. [20], is the scarcity of
large-scale, diverse TOG datasets. Murali et al. [19]
addressed this by contributing the TaskGrasp dataset
and the GCNGrasp algorithm. GCNGrasp leverages the
Knowledge Graph built from this dataset but struggles
with generalizing to concepts outside this graph. More
recently, Tang et al. [28] proposed leveraging LLMs to
inject open-ended semantic knowledge, aiming to im-
prove generalization to novel concepts, though it remains
a training-based method. Other training-dependent works
like Tang et al. [29] and those by Jin et al. [7] and
Nguyen et al. [21] also rely on manually annotated
datasets, underscoring the persistent data acquisition
bottleneck.

Our work, GRIM, diverges from these training-centric

paradigms. While we acknowledge the importance of se-
mantic understanding, we eschew the need for extensive
pre-training on task-specific grasp annotations or reliance
on structured KBs. Instead, GRIM champions a training-
free approach by dynamically constructing a memory
from heterogeneous data sources, including synthetic
data, in-the-wild images, and human demonstrations,
thereby directly addressing the data scarcity and anno-
tation burden that encumbers many prior systems.

B. Training-Free Approaches

The emergence of powerful foundation models has
catalyzed training-free TOG methodologies. Approaches
like Li et al. [10], Rashid et al. [26], and Mirjalili et al.
[18] utilize LLMs or VLMs to map semantic knowledge
to target objects for grasp region selection. As Dong et al.
[4] highlights, while these methods eliminate the need
for model training and manual annotation, they typically
produce only coarse spatial priors for grasping, lacking
the precision required for generating directly executable
grasp poses.

RTAGrasp also explores the training-free approach by
learning TOG constraints from human demonstration
videos. Like us, it avoids training and uses demon-
strations, but GRIM stands out with a more diverse
memory construction pipeline—drawing not only from
human videos, but also from AI-generated content and
web images. GRIM also introduces a unique retrieval-
alignment-transfer process. The work most similar to
GRIM in terms of retrieval is Ju et al. [8], which uses
CLIP to retrieve contact points. However, as RTAGrasp
points out, RoboABC struggles with selecting grasps that



Fig. 2: The figure describes our retrieval, alignment and transfer process. The feature scene and memory objects
are shown with DINOv2 PCA features as color representation. In the feature guided iterative alignment phase, the
red point cloud is retrieved from memory, overlaid with the scene object point cloud.

match specific tasks and with figuring out the correct
grasp orientation (”how to grasp”).

GRIM builds upon the strengths of retrieval but sig-
nificantly extends them. Our retrieval leverages a joint
visual (Oquab et al. [22]) and task-semantic (Radford
et al. [25]) similarity, moving beyond simple contact
points. Crucially, we introduce a robust, semantically-
aware alignment strategy using PCA-reduced DINO fea-
tures followed by ICP, designed to handle novel objects
with partial observations. This fine-grained alignment
facilitates a more precise transfer of the full grasp pose
from a memory instance, which is then further refined
against task-agnostic geometric stability criteria for the
scene object. This contrasts with methods providing
only regional guidance or relying solely on transferred
poses without scene-specific geometric validation. Thus,
GRIM offers a comprehensive training-free solution ad-
dressing both ”where” and ”how” to grasp with enhanced
precision and adaptability to novel instances by sidestep-
ping the constraints of pre-defined datasets and explicit
knowledge engineering.

III. METHODOLOGY

We introduce GRIM (Grasp Re-alignment via Itera-
tive Matching), a training-free framework for TOG. To
achieve this, we adopt a retrieval-alignment-and-transfer
approach. Our framework is divided into primarily into
two steps: Memory Creation (Fig. 1) and Retrieval and
Transfer (Fig. 2). We further describe our method in
detail.

A. Memory Creation

For generalized semantic alignment and transfer to
novel scenes and objects, we create a memory M of
seen objects extracted from diverse data sources. Each
instance in M contains a feature mesh FM of the object,
a 6D grasp pose Gt in the mesh’s coordinate frame, the
corresponding task T , and object name O. To construct
a single memory instance, we begin with an image IHO

depicting a human hand performing a grasp on a target
object, annotated with the corresponding task T . From
this image, we extract the object mesh, the hand mesh,
and their relative pose. For this step, we build upon and
refine the approach of Wu et al. [32], adapting it to our
specific use case (details in Appendix C). Once we have
the hand mesh, we simplify the mesh to extract a 6D
parallel gripper grasp pose Gt for the task T . For an
object O, we have multiple grasp poses in M, and for
a particular task, multiple grasp poses may be valid.

We use the extracted object mesh from the previous
step to create FM . Following the descriptor field rep-
resentation of Wang et al. [30], we construct a feature
mesh by associating DINO-based embeddings with mesh
vertices. Therefore, the constructed memory can be rep-
resented as:

M = {(FM , Gt, T,O)} (1)

All we need is a single frame to create an instance in
our memory. We construct our memory from different
data sources. For each source, the data extraction method
varies slightly:



1) AI Generated Videos: With the rise of generative
AI, SOTA (state-of-the-art) video generation models
[16] are highly capable at generating accurate videos
following a prompt. We leverage one such SOTA model,
Veo 2, for sourcing generated videos. We first make
a list of objects, their images, along with their task
images using the TaskGrasp [20] dataset. We use the
object image, and name to prompt a VLM (Gemini) to
describe the best way of grasping the object for the
particular task and to generate a prompt for a video
generation model accurately describing about the details
of the video depicting the grasping action. This prompt
is fed into the video generative model. Once we have the
video, we sample the middle frame of the video, since
the depiction of grasping remains consistent throughout
the generated videos. This is our primary data generation
method owing to its inherent scalability. For details, refer
to the Appendix B.

2) In-the-Wild Web Images: The Internet has an abun-
dance of images that can be scraped for learning useful
grasping skills. We use human-sampled images from the
internet and annotate the depicted task by leveraging a
VLM. Then any web image with grasping demonstration
can easily be integrated with our framework.

3) Test-Time Expert Demonstrations: At some point,
an agent with existing memory might not perform well
because that memory could not generalize sufficiently.
So, with our method, we can easily append the memory
with just a single test-time image of grasp demonstration
by a human and update the memory.

B. Memory Retrieval

When encountering a novel object or task, humans
often draw upon past experiences, recalling the most
analogous situations from memory [14, 15]. Inspired
by this, our system implements a similarity search
mechanism within its memory database M. Consider
a scenario where the robot encounters a novel scene
containing a target object, represented by its point cloud
PSO and associated per-point DINO features FD

SO. The
robot is assigned a current task TS for this object. The
features FD

SO are extracted from the scene, akin to dense
descriptor fields [30, 24]. Following segmentation of
the target object PSO, its per-point DINO features FD

SO

are averaged to yield a global object descriptor F̄D
SO.

Similarly, the current scene task TS is encoded using a
text encoder (e.g., CLIP [25]) to obtain its embedding
ETS

.
The memory database M contains a set of stored

objects. Each memory object i ∈ M is represented
by its point cloud PMO,i, its per-point DINO features
FD
MO,i, and an associated global DINO descriptor F̄D

MO,i

(obtained by averaging FD
MO,i). Each memory object i

is also associated with a set of tasks {TM,i,j}, where

each task TM,i,j has a corresponding CLIP embedding
ETM,i,j

and an associated grasp pose GM,i,j .
To retrieve the most relevant memory instance, we

compute a joint similarity score Sjoint(i, j) for each
memory object i and its associated task j:

Sjoint(i, j) = simcos(F̄
D
SO, F̄

D
MO,i) · simcos(ETS

, ETM,i,j
)

(2)
where simcos(·, ·) denotes the cosine similarity. This
score is computed over all memory object-task pairs in
M. We retrieve the memory instance with the highest
joint similarity.

C. Alignment Module

After the semantic memory retrieval, we have a source
memory object (point cloud PMO with DINO features
FD
MO) similar to the masked scene object (PSO with

DINO features FD
SO). A PCA model, MPCA, is trained

on the original FD
MO and FD

SO to project DINO features
into a lower DPCA-dimensional space as F

′D
MO and F

′D
SO.

We begin the alignment process by computing centroids
cMO and cSO, and an initial scale factor sg by comparing
eigenvalues along the principal geometric components
of PMO and PSO. The PMO point clouds often have
very different size than that of PSO; applying the scale
factor sg helps in matching their sizes. Then we do a grid
search over Euler angles, generating candidate rotation
matrices {Ri}. Each Ri forms an initial transformation:

Tinit,i(p) = sgRi(p− cMO) + cSO (3)

We aim to find the closest initial coarse alignment here,
so we calculate a score for each candidate. One might
use Chamfer distance between the Tinit,i(PMO) and PSO

but here we do not aim to find the candidates with the
best geometric match but with the best feature match.
For better generalization we want feature alignment of
OM with OS , as the memory might not always contain
the exact same object as the scene (e.g., a spoon handle
with a spatula handle). For each transformed source point
pm of PMO, we find its Keval nearest neighbors {ps,k}
in PSO. The cost for each pair (pm, ps,k) is a weighted
sum as shown in Eq. 4

Cpair = wg∥pm − ps,k∥2 +wf (1− cos(F
′D
M,pm

, F
′D
S,ps,k

))
(4)

where F
′D
X,p denotes the PCA-DINO feature of point p

in dataset X . wg and wf are the weights assigned to
geometric distance and feature distance. The minimum
Cpair over Keval neighbors gives the point’s cost, and the
average of these point costs determines Score(Tinit,i).
The top Korient initial transformations {T ∗

init} undergo
ICP refinement, yielding refined poses {Tref,j}. Finally,
these refined poses are re-evaluated using the same
combined score metric, with a potentially tighter distance



TABLE I: Comparison of Precision with different methods

Method Novel Instances

Paint
roller

Brush Tongs Strainer Frying
Pan

Fork Mortar Ice
Scrapper

Pizza
Cutter

Random 0.30 0.66 0.23 0.24 0.32 0.26 0.31 0.60 0.50
RTAGrasp 0.39 0.93 0.28 0.55 0.42 0.35 0.37 0.91 0.57

GRIM(Ours) 0.89 0.90 0.58 0.58 0.60 0.40 0.72 0.71 0.92

threshold. The Tref,j yielding the lowest final score is
selected as the optimal transformation Tfinal.

D. Grasp Transfer

Following alignment, the retrieved memory grasp GM

is transformed into the scene using the final alignment
Tfinal to yield the scene grasp GS = Tfinal · GM , ap-
propriately scaled for the target. However, GS might
not represent an optimal or directly executable grasp
pose for the scene object geometry and robot gripper.
To address this, we adopt a sampling-and-evaluation
strategy inspired by prior work RTAGrasp [4]. We first
sample N task-agnostic, geometrically feasible grasp
poses {GA,i}Ni=1 using AnyGrasp [5]. Each candidate
grasp GA,i = (RA,i, tA,i) is associated with a geometric
stability score Sgeo,i.

To evaluate the suitability of each candidate GA,i

with respect to the intent captured by the transferred
memory grasp GS , we define a task-compatibility score.
Let ptarget = tS be the target position derived from GS ,
and vtarget = RSez be its primary approach direction
(where ez = [0, 0, 1]T ). For each candidate grasp GA,i,
let its approach direction be oz,i = RA,iez . The task-
compatibility score Stask,i for GA,i is then computed as:

Stask,i =
vtarget · oz,i

∥vtarget∥∥oz,i∥
+ exp

(
−
∥tA,i − ptarget∥2

2σ2

)
(5)

where σ = 0.1 is a scaling factor. The first term
in Eq. (5) measures the cosine similarity between the
candidate grasp’s approach direction and the target di-
rection derived from the memory grasp. The second term
is a Gaussian decay function that penalizes positional
deviation from the target position. Since ∥vtarget∥ = 1
and ∥oz,i∥ = 1 (as they are column vectors from rotation
matrices or normalized direction vectors), the first term
simplifies to vtarget · oz,i.

The final score Si for each candidate grasp GA,i

combines task-compatibility and geometric stability:

Si = wtaskStask,i + wgeoSgeo,i (6)

Following RTAGrasp [4], we prioritize task-
compatibility by setting wtask = 0.95 and wgeo = 0.05,
given that most candidates generated by the sampler

are already geometrically stable. This sampling-and-
evaluation approach allows us to leverage robust task-
agnostic grasp generation techniques while effectively
aligning the selected grasp with the task context inferred
from the memory system, without requiring intricate
hand-to-gripper re-targeting. The robot then selects the
candidate grasp G∗

A = argmaxi Si for execution. In
our implementation, we use AnyGrasp [5] as a grasp
sampler, although other stable grasp synthesis methods
could be used.

IV. EXPERIMENTS AND RESULTS

A. Baselines

We compare GRIM with the following methods: (1)
Random, which is Task-Agnostic and focuses only
on grasp stability. (2) RTAGrasp [4]is a training-free
method that, like our approach, employs a memory
retrieval approach but differs from ours in that it uses
2D feature matching for memory transfer. For a fair
comparison, we use the same data source and amount
to create memory for RTAGrasp.

B. Dataset

We extensively test our framework on the TaskGrasp
[20] dataset, and compare the results with the baselines.
Since both the approaches use out-of-domain data, we
evaluate on all of positive example data of TaskGrasp.
We also deliberately modify and shorten the memory and
create two splits: held-out objects and held-out tasks. For
the held-out object split, there is no identical memory
object and for the held-out task split, there might be an
identical object but never the same task present in the
memory.

C. Memory

GRIM’s memory buffer contains data from 180 gen-
erated videos, 15 internet-sampled images and 15 self-
demonstrated images, totaling to 210 grasp data in-
stances. We use the same images to create a memory
buffer for RTAGrasp, we estimate the 2D grasp point
and 3D direction vector from our 6D grasp pose.



D. Evaluation Metric

For our approach and all the baselines, at the end,
we classify the 25 annotated grasp poses present in the
TaskGrasp dataset for all object instances. For GRIM
and RTAGrasp, we sample from the task-agnostic grasp
poses available in TaskGrasp, and these sampled poses
are labeled as true. We use Average Precision over
classification of grasp poses as our evaluation metric.

E. Results

TABLE II: Average Precision calculated over all data,
held-out objects, and held-out tasks.

Method All Data Held-out Objects Held-out Tasks

Random 0.49 0.41 0.43
RTAGrasp 0.58 0.52 0.51

GRIM (Ours) 0.67 0.65 0.64

Table II presents the average precision across the
complete TaskGrasp dataset (All Data), the Held-Out
Objects split, and the Held-Out Tasks split. In the
held-out settings, we exclude all object/task data from
the memory that appears in the inference split. Our
method demonstrates strong generalization to unseen
objects and tasks, outperforming other approaches. These
results highlight the effectiveness of our 3D feature-
guided alignment and transfer strategy over traditional
2D feature matching and transfer methods. Performance
on a subset of individual objects is shown in Table I.

V. CONCLUSION

In this research, we present a novel training-free
framework for task-oriented grasping. Experimental re-
sults demonstrate that our approach generalizes more
effectively than 2D feature matching and transfer-based
methods. By leveraging DINO-learned visual features,
our method achieves robust semantic alignment that can-
not be achieved through geometric cues alone. Although
our memory module plays a crucial role in overall ef-
fectiveness, we demonstrate strong performance even on
synthetic data, which is typically noisy and challenging.
Currently, we rely on visual features without explicit
geometric understanding; incorporating geometric infor-
mation, for example, through digital twin generation
[17], could further improve the effectiveness of our
approach.

ACKNOWLEDGMENTS

This research was partially funded by the German
Research Foundation DFG, as part of Collaborative
Research Center (Sonderforschungsbereich) “EASE -
Everyday Activity Science and Engineering”, University
of Bremen.

REFERENCES

[1] Paola Ardón, Éric Pairet, Ronald P. A. Petrick, Sub-
ramanian Ramamoorthy, and Katrin Solveig Lo-
han. Learning grasp affordance reasoning through
semantic relations. IEEE Robotics and Automa-
tion Letters, 4:4571–4578, 2019. URL https://api.
semanticscholar.org/CorpusID:195345691.

[2] Paul J. Besl and Neil D. McKay. A method for
registration of 3-d shapes. IEEE Trans. Pattern
Anal. Mach. Intell., 14:239–256, 1992. URL https:
//api.semanticscholar.org/CorpusID:21874346.

[3] Hao Dang and Peter K. Allen. Semantic grasping:
Planning robotic grasps functionally suitable for
an object manipulation task. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 1311–1317, 2012. doi: 10.1109/
IROS.2012.6385563.

[4] Wenlong Dong, Dehao Huang, Jiangshan Liu,
Chao Tang, and Hong Zhang. Rtagrasp: Learn-
ing task-oriented grasping from human videos via
retrieval, transfer, and alignment. arXiv preprint
arXiv:2409.16033, 2024.

[5] Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Ming-
hao Gou, Jirong Liu, Hengxu Yan, Wenhai Liu,
Yichen Xie, and Cewu Lu. Anygrasp: Robust and
efficient grasp perception in spatial and temporal
domains, 2023. URL https://arxiv.org/abs/2212.
08333.

[6] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,
Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre
Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian
Ichter. Inner monologue: Embodied reasoning
through planning with language models. In arXiv
preprint arXiv:2207.05608, 2022.

[7] Shiyu Jin, Jinxuan Xu, Yutian Lei, and Liangjun
Zhang. Reasoning grasping via multimodal large
language model. ArXiv, abs/2402.06798, 2024.
URL https://api.semanticscholar.org/CorpusID:
267627619.

[8] Yuanchen Ju, Kaizhe Hu, Guowei Zhang,
Gu Zhang, Mingrun Jiang, and Huazhe Xu.
Robo-abc: Affordance generalization beyond
categories via semantic correspondence for robot
manipulation. arXiv preprint arXiv:2401.07487,
2024.

[9] Alexander Kirillov, Eric Mintun, Nikhila Ravi,
Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-
Yen Lo, Piotr Doll’ar, and Ross Girshick. Segment
anything. In arXiv preprint arXiv:2304.02643,
2023.

https://api.semanticscholar.org/CorpusID:195345691
https://api.semanticscholar.org/CorpusID:195345691
https://api.semanticscholar.org/CorpusID:21874346
https://api.semanticscholar.org/CorpusID:21874346
https://arxiv.org/abs/2212.08333
https://arxiv.org/abs/2212.08333
https://api.semanticscholar.org/CorpusID:267627619
https://api.semanticscholar.org/CorpusID:267627619


[10] Samuel Li, Sarthak Bhagat, Joseph Campbell, Yaqi
Xie, Woojun Kim, Katia Sycara, and Simon Step-
puttis. Shapegrasp: Zero-shot task-oriented grasp-
ing with large language models through geomet-
ric decomposition. In 2024 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems (IROS), pages 10527–10534, 2024. doi:
10.1109/IROS58592.2024.10801661.

[11] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li,
Hao Zhang, Jie Yang, Chunyuan Su, Lin Zhu, Lei
Zhang, and Yu Qiao. Grounding dino: Marrying
dino with grounded pre-training for open-set object
detection. In arXiv preprint arXiv:2303.05499,
2023.

[12] Weiyu Liu, Angel Andres Daruna, and S. Chernova.
Cage: Context-aware grasping engine. 2020 IEEE
International Conference on Robotics and Automa-
tion (ICRA), pages 2550–2556, 2019. URL https:
//api.semanticscholar.org/CorpusID:202750339.

[13] Weiyu Liu, Angel Daruna, Maithili Patel, Kar-
tik Ramachandruni, and Sonia Chernova. A
survey of semantic reasoning frameworks for
robotic systems. Robotics and Autonomous
Systems, 159:104294, 2023. ISSN 0921-
8890. doi: https://doi.org/10.1016/j.robot.2022.
104294. URL https://www.sciencedirect.com/
science/article/pii/S092188902200183X.

[14] Federico Malato, Florian Leopold, Andrew Melnik,
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APPENDIX

A. VLM-Based Reasoning and Video Prompt Generation

For the goal of generating a video depicting a particular task, we first prompt a VLM to describe the best way of
grasping and generate a prompt for the same. We use Gemini-2.5-Flash as our VLM. This task requires the VLM
to reason about the object and task semantics. We also put the scene image as reference for scene-conditioned
reasoning. The prompt we use:

VLM Prompt

For an object {OBJ}, I want you to describe the best way a single human hand can hold this object for the
task of {TASK}. The {OBJ}'s image is given, please refer to the image while reasoning about the grasping
way for the given task.

For the holding method, provide:
1. A concise, single-line description of the holding method. (e.g., "Holding the knife by its handle for
cutting.")
2. A detailed text-to-video generation prompt (single paragraph, 7-8 lines). This prompt must clearly
describe the grasping method, the hand's position relative to the object/parts. It also must specify that
the video should feature a single hand, the object, and the hand must be completely visible throughout the
video, and the entire object must be in frame at all times.
3. There must be only the right hand in the video prompt. Never use left hand or both hands in the prompt.

Your response should be in JSON format, where each element of the array is an object.
For the object-task pair, the output JSON must have exactly two string keys: "way_to_hold" and
"video_prompt".
Do not include any other text, explanations, or markdown formatting like ```json ... ``` outside of the JSON
array itself.

Example of the JSON array structure for a "cup" and task of "drink":

{
"way_to_hold": "Holding a ceramic cup firmly by its D-shaped handle.",
"video_prompt": "Generate a video depicting a single human hand securely gripping the D-shaped handle
of a standard ceramic coffee cup. The fingers should be visibly wrapped through the handle's opening,
with the thumb pressing firmly against the top curve of the handle for stability, ensuring the cup is
held upright. The palm is not touching the body of the cup. The hand must be completely visible
throughout the video, and the entire cup must be in frame at all times. The video should focus on the
hand-object interaction, showing the grip and the cup's details clearly."

}
Now, generate this JSON for the object {OBJ}.

We notice that for many cases the grasp pose described by the VLM remains fairly the same. So, in order to be
efficient with the number of generated videos, we use a slightly different approach. We first prompt the VLM to
generate K (3 in our case) distinct ways of grasping the object and then map these three ways of grasping to all
the tasks. This way is much more efficient as we are generating three videos per object, and these can be mapped
to all the tasks present for that object.

K Grasping Ways Prompt

For an object "{OBJ}", I want you to describe multiple ways (3 ways preferable) a single human hand can
hold this object.
Ensure the holding/grasping methods are distinct, primarily differing in the grasping location on the
object. Assume I will also provide an image of the scene with the video generation prompt.

For each holding method, provide:
1. A concise, single-line description of the holding method. (e.g., "Holding the knife by its handle for
cutting.")
2. A detailed text-to-video generation prompt (single paragraph, 7-8 lines). This prompt must clearly
describe the grasping method, the hand's position relative to the object/parts. It also must specify that
the video should feature a single hand, the object, and The hand must be completely visible throughout the
video, and the entire object must be in frame at all times.
3. There MUST be only the right hand in the video prompt. Never use left hand or both hands in the prompt.

Your response MUST be a JSON array, where each element of the array is an object.
Each object in the array must have exactly two string keys: "way_to_hold" and "video_prompt".
Do not include any other text, explanations, or markdown formatting like ```json ... ``` outside of the JSON
array itself.

Example of the JSON array structure for a "cup":
[



{
"way_to_hold": "Holding a ceramic cup firmly by its D-shaped handle.",
"video_prompt": "Generate a video depicting a single human hand securely gripping the D-shaped handle
of a standard ceramic coffee cup. The fingers should be visibly wrapped through the handle's opening,
with the thumb pressing firmly against the top curve of the handle for stability, ensuring the cup is
held upright. The palm is not touching the body of the cup. The hand must be completely visible
throughout the video, and the entire cup must be in frame at all times. The video should focus on the
hand-object interaction, showing the grip and the cup's details clearly."

},
{
"way_to_hold": "Cradling the body of a warm ceramic cup with one hand.",
"video_prompt": "Create a video showcasing a single human hand gently cradling the main cylindrical
body of a warm ceramic cup. The fingers should be spread slightly, conforming to the curve of the cup,
with the palm providing broad support from underneath and the side. The thumb might rest along the
upper rim or side, opposite the fingers. The hand must be completely visible throughout the video, and
the entire cup must be in frame at all times. The video should highlight the hand's gentle grip and the
cup's surface texture."

},
{
"way_to_hold": "Pinching the rim of an empty teacup with thumb and index finger.",
"video_prompt": "Generate a video that illustrate a single human hand delicately holding an empty,
lightweight teacup by its rim. The grasp involves the thumb pressing on the outer surface of the rim
and the index finger (and possibly middle finger) supporting it from the inner surface, a precise pinch
grip. The remaining fingers might be curled or extended gracefully away from the cup body. The hand
must be completely visible throughout the video, and the entire cup must be in frame at all times. The
video should focus on the hand's dexterity and the teacup's delicate design."

}

Now, generate this JSON array for the object "{OBJ}".

Task-Video Mapping Prompt

You are an expert in robotics and human-object interaction with a focus on practicality.
Your task is to identify ALL suitable ways a single human hand can hold an object to perform a specific
task.
Prioritize inclusivity: if a holding method is **possible or doable** for the task, even if not the
absolute most optimal or common way, it should be considered valid. We want to ensure we capture at least
one plausible holding method if any exists.

Object: "{OBJ}" (original ID: "{XXX_OBJ}")
Task to perform: "{task_name}"

Consider the following predefined ways to hold the object "{OBJ}", including their descriptions and
intended video visualizations:
{holding_options_str}
Reason deeply about the physical requirements of the task "{TASK}" when performed with the object "{OBJ}".
Consider factors like:
- Stability needed for the task.
- Precision required.
- Force application (if any).
- Necessary orientation of the object.
- Freedom of movement for the hand or object parts.
- Safety and realism of the hold for the given task.

Based on your reasoning, identify **ALL holding methods from the list above that are possible or doable**
for a single human hand to effectively and realistically perform the task. A task can have multiple valid
ways to hold the object. Your goal is to be comprehensive.

Your response MUST be a JSON object containing a single key "valid_indices".
The value for "valid_indices" must be a list of integers, where each integer is an index from the provided
list of holding methods.
For example:
If methods 0 and 2 are suitable:
{

"valid_indices": [0, 2]
}
If only method 1 is suitable:
{

"valid_indices": [1]
}
If all methods (0, 1, and 2) are considered possible or doable:
{

"valid_indices": [0, 1, 2]
}
There must always be at least one index in the list.
Do not include any other text, explanation, or markdown formatting outside of this JSON object.



B. AI Generated Video

A significant portion of our memory dataset (86%)
is constructed using AI-generated videos. For this pur-
pose, we leverage the capabilities of the Veo 2 genera-
tive model. While image-based generative models often
struggle with interpreting complex textual prompts, we
found that video generation models exhibit better fidelity
in this regard. Specifically, generated videos demonstrate
improved performance in adhering to grasping instruc-
tions, such as those provided by a large language model
like Gemini.

However, these models can still struggle with non-
intuitive scenarios or when requiring nuanced object in-
teraction. For instance, if an object possesses a prominent
handle, the generated video might default to a grasp
on the handle, even if the prompt specifies a different
interaction point. Examples illustrating the outputs from
our video generation pipeline, including variations based
on different task prompts given a reference image, are
presented in Figure 3. We anticipate that continued
advancements in such generative models will directly
translate to enhanced capabilities and performance for
our overall framework, further improving its ability to
learn from diverse and complex interactions.

C. 3D Hand and Object Reconstruction from Images

To populate our grasp memory M with task-oriented
6-DOF parallel gripper poses, we process single images
depicting human hands interacting with objects. This
process leverages and adapts the MCC-HO framework
presented by Wu et al. [32] for hand-object 3D re-
construction. When processing AI-generated videos (as
detailed further in Appendix B, if applicable, or simply
”from AI-generated videos”), a representative frame is
typically selected by sampling from the middle of the
video, as grasping actions are often consistently depicted
there. For other image sources, a single static image is
used directly.

The pipeline begins with segmenting the hand and
object from the input image. For this, we employ
Grounding SAM, which typically combines a text-
promptable object detector (such as Grounding DINO
by Liu et al. [11]) with the Segment Anything Model
(SAM) by Kirillov et al. [9]. In our implementa-
tion, we utilize a SAM model with a ViT-Base back-
bone (facebook/sam-vit-base) for segmentation,
guided by prompts to acquire precise masks of the
interacting entities. These masks guide the subsequent
3D reconstruction.

Following segmentation, the MCC-HO framework is
used to jointly reconstruct the 3D geometry of both
the hand and the held object from the single view. A
critical part of the object reconstruction module, adapted
for our memory creation, involves an iterative alignment

procedure. This alignment optimizes the fit of a retrieved
or generated object model to the visual and geometric
cues from the image. The optimization function for this
alignment, Lalign, is a weighted sum of a Chamfer loss
(LCD) and a DINO PCA-based feature similarity loss
(LDINO PCA):

Lalign = LCD(Ptarget, Pcand(R, T, s)) + wDINO · LDINO PCA
(7)

where:
• Ptarget is the combined target point cloud (from the

initial object reconstruction and the known hand
geometry).

• Pcand(R, T, s) is the candidate object point cloud,
transformed by rotation R, translation T , and scale
s.

• LCD(P1, P2) =
∑

x∈P1
miny∈P2

∥x − y∥22 +∑
y∈P2

minx∈P1
∥y − x∥22 is the Chamfer distance

between two point sets P1 and P2.
• LDINO PCA = 1 −

simcos(f̄PCA(D(Itarget)), f̄PCA(D(Icand))) measures
the cosine dissimilarity between the mean PCA-
projected DINOv2 features. D(I) represents the
DINOv2 features extracted from an image I
(facebook/dinov2-small-patch14-224,
which corresponds to ViT-S/14), f̄PCA denotes the
mean of these features after PCA projection, Itarget
is the input image patch, and Icand is the rendered
image of the candidate object.

• wDINO is the weight for the DINO loss component,
set to 0.005 in our setup.

The alignment proceeds through several stages: an
initial alignment of principal axes, followed by coarse ro-
tational adjustments via flips about these axes, then fine-
grained rotational refinement, and finally, fine-tuning of
the translation. The entire pipeline, from image input to
the reconstructed hand and object, takes approximately
7 minutes per image to process on an Nvidia RTX4060
laptop GPU.

Once the 3D point cloud of the human hand is accu-
rately reconstructed by the MCC-HO module, we convert
this detailed five-fingered representation into a simplified
6-DOF parallel gripper pose. This conversion is achieved
using our algorithm, which first identifies key segments
of the hand—specifically the thumb, index finger, middle
finger, and the palm/back of the hand—by processing
the hand vertices. The centroids of these segments are
then used to define the gripper’s characteristics. The
midpoint between the thumb centroid and the combined
centroid of the index and middle fingers defines the
gripper’s center (translation). The vector connecting the
thumb and opposing fingers establishes the primary axis
for gripper width and one component of its orientation.



The palm centroid provides a reference point to better
estimate the approach vector and thus the complete 3D
orientation (rotation matrix) of the gripper. The distance
between the opposing finger segments determines the
gripper width, and an estimated gripper finger length is
derived based on the hand’s overall dimensions and the
relative positions of the segments. This method robustly
extracts a functional parallel gripper pose suitable for
robotic execution.

D. Feature Guided Alignment

The most crucial part of our grasp transfer frame-
work lies in Feature Guided 3D alignment. We use
DINOv2-vitl14’s visual features for creating our feature-
rich point cloud, both for the memory object and the
scene. Subsequently, we segment the target object using
Grounded-SAM to obtain its feature-rich point cloud,
a process similar to that described by Wang et al.
[31]. We explored various algorithms for source and
target point cloud alignment, including pure geometric
alignment and pure feature-based alignment. However,
we found that neither performs optimally in isolation.
Pure geometric alignment necessitates that the target and
source point clouds possess roughly similar shapes; even
with complete point clouds, it frequently converges to
a flipped orientation of the correct one. Furthermore,
this method suffers particularly in cases involving noisy
or partial point clouds. As for purely feature-based
matching, we observe that methods effective in 2D image
domains—such as those in Murali et al. [20]—do not
translate well to 3D. This is primarily because DINO
features, being trained on 2D images, capture only
visual information. When these features are distilled into
3D, they suffer from object symmetry, often leading
to incorrect correspondences such as matching features
from the right side of an object to its left, and vice versa.

To this end, we designed a hybrid alignment algorithm
that synergistically leverages both visual features and
geometric cues. This approach is formalized by a cost
function for each potential point pair (pm, ps,k) between
the memory point cloud (m) and a scene point cloud (s),
calculated as a weighted sum:

Cpair = wg∥pm − ps,k∥2 +wf (1− cos(F
′D
M,pm

, F
′D
S,ps,k

))
(8)

where pm is a point from the memory object, ps,k is a
point from the scene object, and F

′D
X,p denotes the PCA-

DINO feature of point p in dataset X . The terms wg and
wf represent the weights assigned to the geometric and
feature similarity components, respectively. Our Feature
Guided Iterative Alignment approach is able to perform
well even in cases where pure geometric methods fail,
demonstrating significant robustness and accuracy.

The generalization of our feature-guided alignment is
particularly evident when aligning objects of different

categories, as illustrated in the second section of Figure 5
(”Alignments between Objects of Different Category”).
For instance, our framework demonstrates that an object
in memory possessing a handle, such as a Ladle, can
successfully generalize its alignment to various other
objects in the scene that also feature handles, like a
Grater or a Whisk. This ability to identify and match
salient functional parts like handles across diverse object
types underscores the semantic understanding embedded
within our hybrid approach, facilitated by the DINO
features guiding the geometric alignment.

Further highlighting the advantages of our method,
Figure 6 provides a direct visual comparison between
pure geometric alignment and our feature-guided align-
ment for several challenging pairs. For the pure geo-
metric alignment results shown, we effectively set the
feature weight wf = 0 in Equation 8, relying solely
on geometric proximity (wg maintained). As can be
observed, the pure geometric approach often misaligns,
converges to local minima, or results in flipped orienta-
tions. In contrast, our feature-guided alignment consis-
tently produces more accurate and semantically correct
alignments. With these results, it becomes apparent that
our Feature Guided Iterative Alignment stands superior,
offering a more robust and generalizable solution for 3D
object alignment in complex scenarios.



Reference Image (a) (b) (c)

Fig. 3: On the left we have the reference image used for video generation. (a), (b) and (c) are sampled frames from
the generated videos using different task prompts.



Input Mask Reconstructed Point
Cloud Rendered View

Aligned hand, gripper
and object

Fig. 4: Visualization of the 3D hand-object reconstruction and grasp pose derivation pipeline for various objects.
Each section shows four stages from left to right: Input image masked by Grounding SAM; Reconstructed 3D Point
Cloud (PCD) of the object; Rendered view of the reconstructed object geometry used for DINO feature alignment;
and Final aligned pose showing the hand (obtained using HaMeR by Pavlakos et al. [23]) and the derived parallel
gripper relative to the target object.



Alignment on Same Object Category

(a) Ladle to Ladle (b) Mortar to Mortar (c) Mug to Mug (d) Scissors to Scissors

Alignments between Objects of Different Category

(e) Ladle to Grater (f) Ladle to Tiller (g) Ladle to Squeegee (h) Ladle to Whisk

(i) Ladle to Paint Roller (j) Mug to Mixing Bowl (k) Mug to Pitcher (l) Mug to Measuring Cup

(m) Pan to Spatula (n) Pan to Grater (o) Spatula to Pan (p) Spatula to Spoon

(q) Spatula to Fork (r) Spoon to Toilet Brush (s) Spoon to Paint Roller (t) Spoon to Hammer

Fig. 5: Examples of Feature Guided Iterative Alignment. In the sub-captions, the source object (retrieved from
memory, often visualized as a red point cloud) is aligned to the target object (from the scene, often visualized as
a blue point cloud). The first section shows alignments where source and target objects are of the same category
(e.g., Ladle to Ladle). The second section demonstrates alignments between objects of different categories (e.g.,
Ladle to Grater), indicating the framework’s ability to generalize across diverse pairings.



Matching Pair Feature-Guided Alignment Pure Geometrical Alignment

Ladle to Grater

Mortar to Mortar

Mug to Pitcher

Mug to Measuring Cup

Pan to Grater

Spoon to Paint Roller

Fig. 6: Comparison of object alignments. Column 1 describes the matching pair (Source in red, Target in blue).
Column 2 shows results from Feature-Guided Alignment, and Column 3 shows results from Pure Geometrical
Alignment. Each row displays a corresponding pair.


	Introduction
	Related Works
	Data-Driven Approaches
	Training-Free Approaches

	Methodology
	Memory Creation
	AI Generated Videos
	In-the-Wild Web Images
	Test-Time Expert Demonstrations

	Memory Retrieval
	Alignment Module
	Grasp Transfer

	Experiments and Results
	Baselines
	Dataset
	Memory
	Evaluation Metric
	Results

	Conclusion
	Appendix
	VLM-Based Reasoning and Video Prompt Generation
	AI Generated Video
	3D Hand and Object Reconstruction from Images
	Feature Guided Alignment


