IMPACT ©: Intelligent Motion Planning with
Acceptable Contact Trajectories via Vision-Language Models

Yiyang Ling*, Karan Owalekar*, Oluwatobiloba Adesanya, Erdem Biyik, Daniel Seita
University of Southern California
*Equal contribution
Correspondence: {lingyiya,kowaleka,seita} @usc.edu

Abstract—Motion planning involves determining a sequence of
robot configurations to reach a desired pose, subject to move-
ment and safety constraints. Traditional motion planning finds
collision-free paths, but this is overly restrictive in clutter, where
it may not be possible for a robot to accomplish a task without
contact. In addition, contacts range from relatively benign (e.g.,
brushing a soft pillow) to more dangerous (e.g., toppling a
glass vase). Due to this diversity, it is difficult to characterize
which contacts may be acceptable or unacceptable. In this
paper, we propose IMPACT, a novel motion planning framework
that uses Vision-Language Models (VLMs) to infer environment
semantics, identifying which parts of the environment can best
tolerate contact based on object properties and locations. Our
approach uses the VLM’s outputs to produce a dense 3D “cost
map” that encodes contact tolerances and seamlessly integrates
with standard motion planners. We perform experiments using
20 simulation and 10 real-world scenes and assess using task
success rate, object displacements, and feedback from human
evaluators. Our results over 3620 simulation and 200 real-world
trials suggest that IMPACT enables efficient contact-rich motion
planning in cluttered settings while outperforming alternative
methods and ablations. Supplementary material is available at
https://impact-planning.github.io/,

I. INTRODUCTION

Classical motion planning for robot manipulation [30],
[42] frames the problem as finding a path for the robot’s
end-effector to reach a target while avoiding collisions with
obstacles. This formulation is generally desirable, but can be
highly restrictive, especially in densely cluttered environments.
In such cases, some incidental contact may be necessary to
achieve a task, or to accomplish it more efficiently than by
strictly avoiding all collisions.

Consider the motivating example in Fig. [T} which shows a
robot manipulator making contact with a toy bear to efficiently
reach the target salt shaker. Due to the clutter, a collision-free
path to the salt shaker either does not exist or would require
a longer parabolic motion to go above the obstacles (which,
again, may not be feasible in cluttered cabinets and boxes).
We thus desire robots that can achieve a task while moving
through a cluttered environment, making appropriate contact
as needed. In this work, the term “contacts” does not refer to
when a robot uses its grippers to touch a target object (e.g., for
grasping). Instead, we consider other types of contact: when
any part of the robot touches any non-target (or “distractor”)
object in the environment. We study this in motion planning
for tasks that involve reaching to a target in dense clutter.

To address this challenge, we propose Intelligent Motion
Planning with Acceptable Contact Trajectories (IMPACT),

a novel framework that leverages modern Vision-Language
Models (VLMs) such as GPT-40 [34] to infer object contact
tolerances. After analyzing object properties, IMPACT gener-
ates a 3D cost map to represent the tolerance rate of different
regions in the scene. This cost map integrates seamlessly
with standard off-the-shelf motion planning algorithms to
enable trajectories which engage in efficient and semantically-
acceptable contact. We pair IMPACT with the RRT* motion
planning algorithm [[17]] as our primary method, and we refer
to this combination as IMPACT+RRT*. We perform experi-
ments in simulation and real-world settings, testing a variety
of contact-rich, densely cluttered reaching tasks. We evaluate
IMPACT+RRT* using multiple quantitative metrics, including
human preference rankings from a user study. Our results
indicate that users prefer IMPACT+RRT* over alternatives,
suggesting that it is a promising approach for facilitating
semantically-acceptable contact-rich manipulation.
Our contributions are as follows:

o IMPACT, a framework that formalizes “acceptable con-
tact” and generates a 3D cost map to densely represent
object tolerance information.

o A motion planning pipeline that integrates contact cost
maps with standard motion planning to find semantically-
acceptable contact-rich trajectories.

o Simulation and real-world experiments of
IMPACT+RRT* for reaching-based tasks in dense
clutter, and evaluation of contact-rich trajectories using
quantitative task-based and human feedback metrics.

II. RELATED WORK
A. Robot Motion Planning

Classical motion planning algorithms can be broadly
characterized as optimization-based or sampling-based.
Optimization-based methods, such as TrajOpt [39], frame the
problem as minimizing a cost function subject to kinematic,
dynamics, and obstacle avoidance constraints. Sampling-based
methods, such as PRM [18], RRT [24], and RRT* [[17],
incrementally build a graph or tree of feasible paths. While
there are numerous variants of these methods, a common
underlying theme is the constraint of avoiding any collisions.
This is generally desirable, but means motion planning under
this standard formulation has limitations. In densely cluttered
scenarios where contact is inevitable, these motion planners
might not find a solution, even though one might exist if

https://impact-planning.github.io/

Collision-Free

Acceptable
Contact

Fig. 1: An example of a reaching task and object costs. The
first row shows the difference between collision-free paths
and paths with acceptable contact. Left: Collision-free paths
prevent a “straight” path to the salt shaker because of the toy
bear and the glass bottle obstacles (each marked with a red
“X’). Right: With semantically acceptable contact, the robot
can successfully reach the salt shaker by pushing the toy bear
and avoiding the fragile glass bottle. The second row shows
cost of each object generated by GPT-4o. Left: original scene.
Right: GPT-40 assigns different costs to objects, with the target
assigned -1 (toy bear: 4, salt shaker: -1, glass bottle: 9).

the robot engages in light contact. Our method seamlessly
integrates with prior motion planning algorithms for flexible
contact-rich manipulation.

Some motion planning works modify cost functions so that
certain obstacles, such as leaves, are permeable , and
thus allow for some contact. However, these methods have
been in domain-specific foliage settings and not tested in com-
mon cluttered scenarios with rigid objects. In closely-related
work, proposes to use semantic language commands to
enable semantically-acceptable contact. Unlike [47], we do not
require explicit language instructions about which contacts are
acceptable, since we utilize VLMs to automate this process.

B. Contact-Rich Robot Manipulation

Dealing with contacts is challenging in manipulation [42].
This may refer to frequent contact between an object (that the
robot grips/holds) and an environment, such as tight placement
tasks like connector and peg insertion as explored in robotic
reinforcement learning works [25], [26], [38]. Another method
for contact-rich problems is extrinsic dexterity [4]], [50], which
takes advantage of contacts between an object and rigid parts
of the environment (such as walls) to reorient the object
to improve subsequent manipulation. Other works consider
contact-rich interactions in different applications such as as-
sistive robots that incorporate human feedback and touch [15].
In contrast, we consider the relatively less-explored “contact-
rich” setting, where “contact” refers to robot parts touching
the environment’s obstacles.

C. Vision-Language Models (VLMs) for Robotics

VLMs such as GPT-4o [34]] and Gemini are trained on
broad Internet-scale data and have remarkable semantic and
spatial knowledge. Thus, the research community has explored
numerous applications of VLMs in robotics [8]], [T1], [19].
One way to use VLMs in robotics is to generate high-level
task plans, in the form of natural language [I]l, [7], or
executable code [27], [40]. Another way to use VLMs is for
reward [31]], [41]l, [49] or task design [13], [43], [44]. VLMs
can also aid low-level affordance reasoning , which,
in an extension of this direction, can involve generating full
trajectories . In contrast to these works, we use VLMs for
a complementary objective: to infer object contact tolerances
to guide contact-rich motion planning.

In closely-related work, VoxPoser [I4] exploits VLMs for
open-world reasoning and visual grounding to compose a 3D
value map to guide robotic interactions. As in [14], we use
VLMs to construct a 3D value map (equivalently, a cost
map). However, unlike VoxPoser, which requires the user
to explicitly specify which objects to avoid with language,
e.g., “get the item, but watch out for that vase!” we do not
require explicit language commands. Instead, we leverage the
improving spatial and semantic knowledge of recent VLMs
to determine object contact tolerances, and show manipulation
in more densely cluttered environments. Other recent work
relies on VLMs for semantically-safe manipulation [2]] but
assumes that any collisions are undesirable.

III. PROBLEM STATEMENT AND ASSUMPTIONS

We assume a single robot arm with a standard gripper
operates in a densely cluttered environment that contains n ob-
jects, denoted as O = {01, 02, ...,0,}. The robot must reach
a given target object Oyarg € O while minimizing unwanted
contact with other objects (i.e., obstacles) in (’)\otarg. In
environments with significant clutter, 0¢,rg may be behind or
close to multiple objects and reaching it may be infeasible with
a collision-free trajectory. To reduce occlusions, at least two
cameras provide respective RGBD images at the start. Given
these image observations, the objective is to compute a trajec-
tory 7 for the robot, defined as a sequence of gripper poses,
such that its gripper ultimately touches o04.e. Thus, among
the dynamically feasible trajectories, our objective is to select
one that reaches the target while engaging in “semantically-
acceptable” contact with obstacles when needed.

IV. METHOD: IMPACT

Our framework consists of two main steps (see Fig. [2).
First, it uses a VLM to obtain object costs in a cluttered scene
(Sec.[IV-A), and then uses those costs for contact-rich motion

planning (Sec. [V-B).

A. Obtaining Object Costs using GPT

A key technical challenge is defining the notion of an
“acceptable” contact. This depends heavily on semantics, or
the general-purpose commonsense knowledge that humans
have about the behavior of diverse objects. Different objects

Original Scene/ Annotated Image I’

Vision
Language

@ (There is {(1) a toy bear, (2) a coffee cup and :

I\(S) a tomato can}. Please assign safety scores. |

3D Cost Map

HoW
.

Execution

Motion Planning

Fig. 2: Overview of IMPACT. There is a toy bear, a coffee cup and a tomato can on the table. The objective is to reach the
tomato can. We use SAM2 [36] to segment the image and label the objects using “1,” “2,” and “3” to assist GPT’s visual
reasoning. GPT also receives a language template prompt £ with object information from SAM2. GPT produces costs for the
three objects, which are projected into a voxel grid C indicating the cost for the robot end-effector to enter each voxel. The
costs are high for the coffee cup (GPT-assigned cost: 8) and the tabletop (a fixed cost of 10). We use a cost of -1 for the target
object. Finally, an off-the-shelf motion planner (RRT*) uses this to guide the robot, which avoids the coffee cup but makes

contact with the toy bear to successfully reach the tomato can.

with varying materials, geometries, sizes or purposes have dif-
ferent tolerances to potential contact. Furthermore, tolerance to
contact should also depend on an object’s proximity to nearby
objects. Therefore, we leverage the commonsense knowledge
in VLMs to estimate the tolerance rate for contact of each
object. We encode this information by assigning each object
to an integer in {0, 1,...,10} as the cost, where a higher cost
indicates lower tolerance to contact with any part of the robot
arm as it executes a trajectory. For example, the cost of a
fragile object (e.g., wine glass) should be significantly higher
compared to the cost of an object that can better absorb contact
(e.g., foam rubber).

We use GPT-4o (hereafter, GPT) as the VLM to generate
the cost of all objects in the scene due to its strong spatial
reasoning capabilities [5]], but our approach is compatible with
other VLMs. The input to GPT includes both an annotated
image and a text prompt. To get the image input, we mount
an RGBD camera between the scene and the robot to capture
a front-view image I in simulation, while in the real world
setup, we mount a camera at the right front of the scene
to get I. Cluttered scenes may contain too many objects for
GPT to accurately recognize all of them. Consequently, we
use SAM2 [36] to segment the objects. Then, we use Set-of-
Mark prompting [48] to annotate the image with numerical
indices over the objects. The segmented and annotated image
I’ is ultimately provided as part of the input to GPT.

We also design a text prompt template ¢ which includes the
list of objects in the scene (but is otherwise task-agnostic),
and some general principles related to the concept of contact
tolerance. Objects are labeled with the same numbers as in the
input image, marked by SAM2. We include Chain-of-Thought
prompting [45] in ¢ to improve GPT’s reasoning. The full text
prompt can be found on our website. The output of GPT is a
dictionary with the cost of all queried objects. Fig. [T] (second
row) shows an example of generated object costs, suggesting
that GPT can accurately reason about object properties. For
example, it understands that a glass bottle is fragile, and thus
assigns it a high cost of 9. In contrast, other objects have a
lower cost (i.e., better contact tolerance) such as the toy bear
with a cost of 4.

B. Motion Planning with Contacts

We use motion planning algorithms to synthesize robot
trajectories in the cluttered environment. Inspired by the 3D
value map in VoxPoser [14], we propose to construct a 3D
cost map C' to guide the motion planner. The cost map is
represented as a voxel grid of dimension (L x W x H), where
each voxel C[z,y, 2] denotes the cost at position (z,y, 2).
We initialize C' to be all zero. Then, for each object in the
scene, we identify the occupied voxels in 3D space and assign
them the corresponding object cost from GPT (see Sec. [[V-Al).
During planning, we further assign the cost of the target to -1
instead of using the cost generated by GPT. This encourages
the planning algorithm to find a path towards the target. We
visualize cost maps in Fig. 2] and Fig. 3]

Once we construct the 3D cost map, we use a standard
motion planning algorithm to compute a trajectory that min-
imizes cost. Each trajectory consists of a sequence of robot
end-effector positions. The total cost of a trajectory 7 is the
sum of costs of obstacles the robot arm collides with:

7|
Cost(r) = > _CIr]. (1)
=1

In Equation |7| denotes the length of the trajectory 7
and 7; is the position of the i-th waypoint. By combining
the cost map and the motion planning algorithm, we can
compute a trajectory that minimizes contact with high-cost
obstacles while permitting acceptable contact when necessary.
Notably, we only use Equation [T] during motion planning. For
evaluation, we also compute the cost based on the obstacles
the robot arm makes contact with, but we do not count the
same obstacle multiple times (see Sec. [V-D).

As our main method, we use IMPACT with the RRT* [[17]
motion planner, and denote this as IMPACT+RRT*.

V. SIMULATION EXPERIMENTS

A. Experiment Setup in Simulation

We build and test our pipeline using PyBullet simulation [6].
In simulation, we create 20 scenes designed to test contact-
rich manipulation. These use a hybrid object dataset, which
includes tall and bulky items (e.g., sugar boxes and water

Original Scene

3D Cost Map

60
50
20
z

0

S

o
E: 50 X

S 80
> s ¥ 2 %
y

09
oL
o

Fig. 3: Our simulation setup in PyBullet simulation [|§|] In this
example scene, there is a box which contains a wine glass, a
sugar box, and a mug. The objective is to reach the mug.
The yellow and green regions (e.g., for the wine glass and the
larger box) indicate higher costs. For visual clarity, we show
the original scene I, before it is annotated for GPT. See Sec. M
for more details.

pitchers) from the YCB [3]] data and fragile objects (e.g., wine
glasses and stacked bowls) using 3D models generated from
TRELLIS [46]]. TRELLIS allows constructing delicate object
meshes from single-view images and introduces fragility con-
straints not present in YCB objects. All objects are on a shelf
so that the robot cannot reach the target object from above.
See Fig. [3] for an example scene.

We use three cameras which capture the scene for cost map
generation: one in front of the shelf and two on the sides. The
camera in front of the shelf also captures the scene image [
used as input to GPT. To prevent interactions with the shelf
or tabletop, we explicitly assign their costs to be 10. We set
the maximum allowed path cost to 10 to balance efficiency in
path planning and contact avoidance. To quantify the benefit
of using GPT-generated costs, we compare with two control
groups: (i) with the maximum path cost set to O to obtain
a collision-free path, which we test in our “Collision-Free
Planning” baseline (see Sec. [V-C), and (ii) with the cost of
all objects set to 0 to see how the planner will plan the path
if all collisions are allowed (see Sec. [V-F).

B. Motion Planning Methods

As reviewed in Sec.[[V-B] our method is IMPACT+RRT*. In
simulation, we also test IMPACT with RRT and MPC [9]
as the motion planners, and thus call the respective methods
IMPACT+RRT and IMPACT+MPC. We slightly modify these
planning algorithms to improve their effectiveness for manip-
ulation in dense clutter. For example, to encourage the robot
to avoid high-cost obstacles, we define a threshold for object
cost. During planning, we check the distance to each obstacle
exceeding this cost threshold to make sure the nodes close to
them are not considered as waypoints of the trajectory. We
apply this modification to both RRT and RRT*. For MPC, the
cost of a state is defined as the sum of (i) the distance to the
target object, (ii) the cost of the current end effector position
decided by the cost map and (iii) a penalty for collisions with

Vote for the Best Video
Question 9 of 43
Target Object: toy dinosaur

Sync Videos

Right

Cannot Decide

Fig. 4: Our user study evaluation website interface. For each
question, the human evaluates two videos of robot trajectories
without knowing the underlying robotics method that caused
each robot motion. For each video pair, they select which video
is more preferable. To aid comparisons, we enable the users to
sync the videos. We also allow the option of “Cannot Decide.”

high-cost obstacles.

C. Baseline Methods

We evaluate IMPACT against the following baselines.

1) Collision-Free Planning: This avoids all collisions, and
serves as a baseline to demonstrate that in cluttered environ-
ments, a collision-free path may not exist. We test this with
MPC, RRT, and RRT*.

2) Language-Conditioned Path Planning (LAPP): We use
LAPP as a strong baseline, because (like IMPACT) it
also allows robots to make collisions with specific objects in
the environment. LAPP trains a language-conditioned collision
function that predicts whether a robot will collide with objects
other than the one specified in a language instruction (which
the robot is permitted to collide with). The collision function
has three inputs: (i) CLIP [35] image embeddings of the scene,
(i) CLIP text embeddings of the language instruction (e.g.,
“can collide with toys”), and (iii) joint configurations of the
robot arm. We build directly upon the official open-source
LAPP code.

D. Evaluation Metrics

To evaluate the quality of trajectories in our densely clut-
tered environments, we compute the following metrics. The
robot’s trajectory terminates when the robot’s end-effector
reaches the target, or if a time limit is reached.

e reach_target: whether the robot reaches the target
object at any point during the trajectory:

< 0.01.

reach_target = ||p, — p;mg

e path_cost: the sum of the cost of all collided obstacles
during execution:

path_cost = Zon\o Co
targ

Category Path Planning Reach Path Contact High Cost Object Success
Algorithm Target T Cost | Duration (s) | Displacement (cm) | Rate 1
MPC 76.93% - 12.5 8.05 20.75%
Collision Free RRT 78.92% - 9.39 6.36 34.75%
RRT* 83.12% - 7.57 6.32 37.75%
MPC 81.45% 11.59 12.0 7.97 41.00%
IMPACT RRT 84.67 % 8.52 7.64 6.11 58.75%
RRT* (Ours) 82.50% 8.85 7.50 6.08 63.25%
- LAPP 41.18% - 9.53 10.58 35.00%

TABLE I: Comparison of path planning algorithms and results in PyBullet simulation. We report 5 quantitative metrics (see
Sec. [V-D). “Reach Target" reports when the robot’s end effector reaches the target after executing the trajectory, and where
collisions are allowed. “Success Rate" only counts the trajectories that strictly contain no collisions to (human-designated)
high-cost obstacles. The arrow 1 indicates larger values of the metric correspond to better performance, and | represents the
opposite. Collision-Free baselines and LAPP do not use GPT to generate object costs, so they do not have values for “Path

Cost" in this table.

LAPP
IMPACT+MPC
IMPACT+RRT
Collision-free+MPC
Collision-free+RRT
Collsion-free+RRT*

0% 20% 40% 60% 80% 100%

B IMPACT+RRT* (Ours) m Cannot Decide m Baseline Method

Fig. 5: Human evaluation results of simulation experiments.
Each bar represents the results of comparing IMPACT+RRT*
(i.e., our method) versus one baseline. It is divided into three
segments: IMPACT+RRT*, the baseline method, and “Cannot
decide." Each segment counts the number of questions where
people prefer the trajectory generated by the corresponding
method. For example, the top row reports eight questions
that compare the trajectory from LAPP and IMPACT+RRT*.
Among six of these questions, more participants prefer the
trajectory planned by IMPACT+RRT*. In one question, they
prefer the trajectory generated by LAPP. In another question,
most people do not have a strong preference.

e contact_duration: the sum of duration for which
the robot is in contact with any obstacle:

contact_duration = E °
0€O\ Otarg

e displacement: displacement of each object:
displacement, = ||p, — pol|,0 € O.

Here, e is the robot end effector. For each object o € O,
Po and p/, denote its initial and final position, respectively;
the final position considers early termination. The cost of
object o is represented by ¢, while %, is the contact duration
between the robot and o. After calculating these metrics, we
define a trajectory as a success if the following are all true:

(i) the robot reaches the target with path_cost < 10,
(i1) contact_duration < 100 and (iii) for all high-cost
obstacles, we have displacement < (.1. To decide on
which objects are “high-cost” in a given scene, a skilled human
annotator pre-selects the 1-2 highest-cost objects in a scene,
and those are set for all methods evaluated.

1) User Study Evaluation: While the prior quantitative
metrics evaluate trajectory cost, they may not fully capture
whether a trajectory is “acceptable” to humans. For example, if
all collisions with objects are counted and penalized equally, a
trajectory where the robot solidly collides with only one object
has a lower cost compared to one where it gently contacts
multiple objects. Thus, motion planning algorithms optimize
to select the former trajectory, even though the latter trajectory
may be more acceptable to humans due to the gentle contacts.
Furthermore, tolerance for contact may vary from person to
person.

To better assess IMPACT’s ability to generate semantically
acceptable behavior, we conduct a user study. We develop a
website to collect human feedback, where participants evaluate
robot trajectories by watching videos. Each question presents
two videos of robot trajectories in the same scene with the
same target object. One video is generated from our algorithm,
and the other by a baseline algorithm. Users are not informed
which algorithm produced each trajectory. Following a similar
approach as Mirjalili et al. [32], participants are asked to
select the trajectory they find most acceptable. See Fig. H]
for a visualization of the website interface. Our study has
been approved by the Institutional Review Board (IRB) at
the University of Southern California. None of the human
evaluators is an author of this paper.

E. Simulation Results

Table [[| reports our simulation results. IMPACT+RRT*
achieves the highest success rate with lower path cost, shorter
contact duration, and smaller displacement of high-cost ob-
jects. IMPACT significantly improves the success rate of
different motion planning algorithms compared to collision-
free planning, while reach_target is similar. This indi-
cates that IMPACT can guide motion planning algorithms

IMPACT + RRT* /

N

Collision-free + RRT* Vi
.‘

Fig. 6: Examples of trajectories planned using different motion planning algorithms and cost configurations in PyBullet
simulation [6]; our method is IMPACT+RRT* (top row). The scene contains three obstacles: a spray bottle, a power drill
and a wine glass. The target object is the jar behind the obstacles. The paths planned by different methods are shown in an
overlaid green curve in each image. We also provide LAPP with a language instruction “Can collide with the spray bottle and

the power drill." See Sec. [V-E] for more details.

Path Planning Algorithm Cost Success Rate
RRT* IMPACT (Ours) 63.25%
Same Cost for All 42.75%
RRT IMPACT (Ours) 58.75%
Same Cost for All 45.50%
MPC IMPACT (Ours) 41.00%
Same Cost for All 39.50%

TABLE II: Results of our ablation study on object costs.
“Same cost for all" refers to assigning all object costs the
same value 0 instead of querying GPT to generate costs. See
Sec. [V-F for details.

to plan trajectories with more acceptable contacts. Further-
more, RRT* achieves the best performance compared to other
planning methods. The other baseline, LAPP, has a lower
reach_target rate and success rate, mainly because it fails
to find a path in some scenes.

Fig. |6| shows trajectories planned by different methods in
the same scene. Our method IMPACT+RRT* finds a trajectory
that makes contact with the spray bottle. However, the path
planned by Collision-free+RRT* intends to avoid all the obsta-
cles, but the robot collides with the fragile wine glass during
execution. This happens because the Collision-Free baseline
prioritizes moving through the gap between the obstacles and
brings the robot too close to the wine glass, increasing the
risk of collision. LAPP also guides the robot to make contact

with the spray bottle while avoiding the wine glass, but the
spray bottle is pushed along the path, preventing the robot from
reaching the target. As shown in Table[l] this common behavior
leads to a higher average high-cost object displacement.

Fig. [5] shows the human evaluation results of simulation
experiments. We collect feedback from 27 participants, each
of them answering 43 questions. Each question compares a
video pair that contrasts our method with some baseline. The
results show that IMPACT+RRT* is the most preferred method
across all scenes, suggesting that our method produces motion
plans that better align with human preferences by leveraging
commonsense knowledge in GPT.

F. Ablation Study

To investigate the benefit of IMPACT, we conduct an
ablation study by setting all object costs to 0, so all colli-
sions are allowed during path planning. Results in Table [II]
demonstrate that IMPACT improves the trajectory success
rate (see Sec. [V-D) of reaching tasks. For all three motion
planning algorithms, IMPACT takes properties of obstacles
into account and assigns object costs based on different scenes.
This encourages motion planning algorithms to avoid obstacles
and generate trajectories with reduced contact.

Fig. 7: Examples of successful trajectories with acceptable contact in the real world. The targets in each scene (from top to
bottom) are the tomato can, the tomato, and the matcha can, respectively.

Fig. 8: Examples of real-world failures. In the left image,
the robot gets stuck on the box while reaching the target toy
dinosaur. In the right image, the robot collides with the glass
bottle. The glass bottle hits the target tomato as it falls and
the tomato rolls away.

VI. PHYSICAL EXPERIMENTS
A. Experiment Setup

We evaluate IMPACT on a real robotic system to validate
our findings from simulation. This does not involve sim2real
transfer, as we provide real-world images directly to GPT for
IMPACT. The hardware setup consists of a Franka Panda arm
with a standard parallel-jaw gripper, and a flat tabletop surface
of size 6§cmx56cm. A human operator arranges multiple
objects in close proximity on top of the surface. For reasonably
fair comparisons among methods, the human tries to place
objects in consistent locations for each scene.

We mount two Intel RealSense L515 cameras on both sides
of the scene to capture RGBD images and generate voxel grids.
In the real world, we need to get the position of each object
to assign the associated object cost to those voxels. Unlike in
simulation, we use Grounded SAM 2 [16], [21]I, [29], [36],
to generate the segmented point cloud of each object as
we build the 3D cost map. Each image, along with the object

Method Success Rate
IMPACT+RRT#* (Ours) 63 %
LAPP 54% (Seen Obj.) 50% (Unseen Obj.)

TABLE III: Results of our method versus LAPP in the real
world. Seen objects refers to objects seen during fine-tuning
of LAPP while unseen objects are novel objects to LAPP.
Our method is zero-shot, so all the objects can be considered
unseen to it.

list, is provided as input to Grounded SAM 2, to predict the
segmentation mask of the objects. We then generate a multi-
view segmented point cloud and convert it to the 3D cost map.
The motion planning part is the same as in simulation.

For physical experiments, we test IMPACT+RRT* and
LAPP. To adapt LAPP for real-world experiments, we fine-
tune it on a small dataset containing 20 real-world RGB
images, manually annotated with collision scores. The images
are captured by an Intel RealSense D435 camera that faces
both the robot and the scene. The annotations explicitly label
which objects are safe to collide with (for example, “can
collide with plastic bottle”). Objects not mentioned in the
language prompts are treated as unsafe by default, aligning
with LAPP’s methodology of explicit collision rules. Human
operators pair each scene with joint configurations and task-
aligned prompts, reflecting the original work’s use of free-form
language constraints [47]. This retains LAPP’s pre-trained
reasoning while grounding predictions in real-world spatial
relationships and safety priorities. Of the 10 test scenes, 9 use
objects seen during fine-tuning, while 1 scene contains novel
objects to evaluate generalization.

B. Real World Results

Table shows real world results of different methods.
IMPACT+RRT* outperforms LAPP in all scenes. Furthermore,
the performance gap is larger in the scene with unseen objects
(70% versus 50% success). The results suggest the strong
generalization ability of our method since it does not need
sim2real transfer. However, LAPP requires fine-tuning on
unseen real world objects to achieve comparable results.

Failure Cases. While IMPACT generates semantically-
acceptable trajectories in most trials, failures can happen dur-
ing execution. Fig. 8| shows two examples of failed trajectories.
The main failure cases are as follows: (i) part of the robot gets
stuck on an obstacle, (ii) the target is displaced when the robot
pushes an obstacle, and (iii) GPT predicts object costs that are
misaligned with human preferences.

VII. LIMITATIONS

While promising, IMPACT has several limitations that point
to interesting directions for future work. First, after selecting
the most semantically-acceptable trajectory, the robot follows
it open-loop. This means it cannot react to unexpected distur-
bances in real-time. Second, IMPACT relies on having rela-
tively complete RGBD observations to provide to the VLMs.
Thus, it may be less effective under partial observability
with severe occlusions. Developing a closed-loop procedure
that can actively perceive the environment may address these
limitations.

VIII. CONCLUSION

In this work, we introduce IMPACT, a framework for
motion planning in cluttered environments that leverages the
broad knowledge in vision-language models (VLMs) to assess
object contact tolerance. IMPACT represents this information
in a 3D cost map for motion planning. Our results in simula-
tion and in real-world experiments demonstrate that robots can
efficiently reach targets while making semantically-acceptable
contact when needed. We hope that this work inspires future
work towards flexible and contact-rich robot manipulation in
densely cluttered environments.

ACKNOWLEDGMENTS

We thank our colleagues Ebonee Davis, Sicheng He, Ayano
Hiranaka, Minjune Hwang, Yunshuang Li, and Qian (Peter) Wang
for helpful technical advice and discussions.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Ahn, A. Brohan, N. Brown, et al., “Do as i can, not
as i say: Grounding language in robotic affordances,” in
Conference on Robot Learning (CoRL), 2022.

L. Brunke, Y. Zhang, R. Romer, et al, ‘“Semanti-
cally Safe Robot Manipulation: From Semantic Scene
Understanding to Motion Safeguards,” arXiv preprint
arXiv:2410.15185, 2024.

B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel,
and A. M. Dollar, “Benchmarking in manipulation re-
search: The YCB object and model set and benchmarking
protocols,” IEEE Robotics and Automation Magazine,
2015.

N. Chavan-Dafle, A. Rodriguez, R. Paolini, et al., “Ex-
trinsic Dexterity: In-Hand Manipulation with External
Forces,” in IEEE International Conference on Robotics
and Automation (ICRA), 2014.

W. Chow, J. Mao, B. Li, D. Seita, V. Guizilini, and
Y. Wang, “PhysBench: Benchmarking and Enhancing
Vision-Language Models for Physical World Understand-
ing,” in International Conference on Learning Represen-
tations (ICLR), 2025.

E. Coumans and Y. Bai, PyBullet, a Python Module for
Physics Simulation for Games, Robotics and Machine
Learning, http://pybullet.org, 2016-2020.

D. Driess, F. Xia, M. S. M. Sajjadi, et al., “PaLM-E:
An Embodied Multimodal Language Model,” in Interna-
tional Conference on Machine Learning (ICML), 2023.
R. Firoozi, J. Tucker, S. Tian, et al., “Foundation Models
in Robotics: Applications, Challenges, and the Future,”
arXiv preprint arXiv:2312.07843, 2023.

C. E. Garcia, D. M. Prett, and M. Morari, ‘“Model
Predictive Control: Theory and Practice - A Survey.,”
Autom., 1989.

G. T. Google, “Gemini: A Family of Highly Capable
Multimodal Models,” arXiv preprint arXiv:2312.11805,
2023.

Y. Hu, Q. Xie, V. Jain, et al., “Toward General-Purpose
Robots via Foundation Models: A Survey and Meta-
Analysis,” arXiv preprint arXiv:2312.08782, 2023.

Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao, “Look
before you leap: Unveiling the power of gpt-4v in robotic
vision-language planning,” in First Workshop on Vision-
Language Models for Navigation and Manipulation at
ICRA 2024.

P. Hua, M. Liu, A. Macaluso, et al., “Gensim2: Scaling
robot data generation with multi-modal and reasoning
llms,” in Conference on Robot Learning (CoRL), 2024.
W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-
Fei, “Voxposer: Composable 3d value maps for robotic
manipulation with language models,” in Conference on
Robot Learning (CoRL), 2023.

R. Jenamani, D. Stabile, Z. Liu, A. Anwar, K. Dim-
itropoulou, and T. Bhattacharjee, “Robot-assisted Inside-
mouth Bite Transfer using Robust Mouth Perception

[16]

(17]

(18]

(19]

[20]

(21]

[22]

[23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

[31]

and Physical Interaction-Aware Control,” in ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), 2024.

Q. Jiang, F. Li, Z. Zeng, T. Ren, S. Liu, and L. Zhang,
T-rex2: Towards generic object detection via text-visual
prompt synergy, 2024. arXiv: 2403.14610 [cs.CV].

S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” International Journal of
Robotics Research (IJRR), 2011.

L. Kavraki and J.-C. Latombe, “Randomized preprocess-
ing of configuration for fast path planning,” in IEEE
International Conference on Robotics and Automation
(ICRA), 1994.

K. Kawaharazuka, T. Matsushima, A. Gambardella, J.
Guo, C. Paxton, and A. Zeng, ‘“Real-World Robot Appli-
cations of Foundation Models: A Review,” arXiv preprint
arXiv:2402.05741, 2024.

M. D. Killpack, A. Kapusta, and C. C. Kemp, “Model
predictive control for fast reaching in clutter,” in Au-
tonomous Robots (AURO), 2016.

A. Kirillov, E. Mintun, N. Ravi, et al., “Segment any-
thing,” arXiv:2304.02643, 2023.

Y. Kuang, J. Ye, H. Geng, et al., “RAM: Retrieval-
Based Affordance Transfer for Generalizable Zero-Shot
Robotic Manipulation,” in Conference on Robot Learning
(CoRL), 2024.

T. Kwon, N. D. Palo, and E. Johns, “Language Models
as Zero-Shot Trajectory Generators,” in IEEE Robotics
and Automation Letters (RA-L), 2024.

S. LaValle, “Rapidly-exploring random trees: A new tool
for path planning,” Research Report 9811, 1998.

M. A. Lee, Y. Zhu, K. Srinivasan, et al., “Making Sense
of Vision and Touch: Self-Supervised Learning of Multi-
modal Representations for Contact-Rich Tasks,” in IEEE
International Conference on Robotics and Automation
(ICRA), 2019.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-
end Training of Deep Visuomotor Policies,” in Journal
of Machine Learning Research (JMLR), 2016.

J. Liang, W. Huang, F. Xia, et al., “Code as policies: Lan-
guage model programs for embodied control,” in IEEE
International Conference on Robotics and Automation
(ICRA), 2023.

F. Liu, K. Fang, P. Abbeel, and S. Levine, “Moka: Open-
vocabulary robotic manipulation through mark-based vi-
sual prompting,” in Robotics: Science and Systems (RSS),
2024.

S. Liu, Z. Zeng, T. Ren, et al., “Grounding dino: Marry-
ing dino with grounded pre-training for open-set object
detection,” arXiv preprint arXiv:2303.05499, 2023.

K. M. Lynch and F. C. Park, Modern Robotics: Mechan-
ics, Planning, and Control. Cambridge University Press,
2017.

Y. J. Ma, W. Liang, G. Wang, et al., “Eureka: Human-
level reward design via coding large language models,”

http://pybullet.org
https://arxiv.org/abs/2403.14610

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

in International Conference on Learning Representations
(ICLR), 2024.

R. Mirjalili, M. Krawez, S. Silenzi, Y. Blei, and W.
Burgard, “Lan-grasp: Using large language models for
semantic object grasping,” in International Symposium
on Robotics Research (ISRR), 2024.

H. Nemlekar, Z. Liu, S. Kothawade, S. Niyaz, B. Ragha-
van, and S. Nikolaidis, “Robotic lime picking by consid-
ering leaves as permeable obstacles,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2021.

OpenAl, A. Hurst, A. Lerer, et al., “Gpt-40 system card,”
arXiv preprint arXiv:2410.21276, 2024.

A. Radford, J. W. Kim, C. Hallacy, et al., “Learning
transferable visual models from natural language supervi-
sion,” in International Conference on Machine Learning
(ICML), 2021.

N. Ravi, V. Gabeur, Y.-T. Hu, et al., “Sam 2: Seg-
ment anything in images and videos,” arXiv preprint
arXiv:2408.00714, 2024.

T. Ren, S. Liu, A. Zeng, et al., Grounded sam: Assem-
bling open-world models for diverse visual tasks, 2024.
arXiv: 2401.14159 [cs.CV].

G. Schoettler, A. Nair, J. Luo, et al., “Deep Reinforce-
ment Learning for Industrial Insertion Tasks with Visual
Inputs and Natural Rewards,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2020.

J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and
P. Abbeel, “Finding locally optimal, collision-free trajec-
tories with sequential convex optimization.,” in Robotics:
Science and Systems (RSS), 2013.

L. Singh, V. Blukis, A. Mousavian, et al., “Progprompt:
Generating situated robot task plans using large language
models,” in IEEE International Conference on Robotics
and Automation (ICRA), 2023.

S. Sontakke, J. Zhang, S. Arnold, et al., “Roboclip:
One demonstration is enough to learn robot policies,” in
Neural Information Processing Systems (NeurIPS), 2023.
R. Tedrake, Robotic Manipulation, Perception, Plan-
ning, and Control. 2023. [Online]. Available: http://
manipulation.mit.edu.

L. Wang, Y. Ling, Z. Yuan, et al., “GenSim: Generating
robotic simulation tasks via large language models,” in
International Conference on Learning Representations
(ICLR), 2024.

Y. Wang, Z. Sun, J. Zhang, et al., “RL-VLM-F: Rein-
forcement Learning from Vision Language Foundation
Model Feedback,” in International Conference on Ma-
chine Learning (ICML), 2024.

J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-
thought prompting elicits reasoning in large language
models,” Advances in neural information processing sys-
tems, vol. 35, pp. 24 824-24 837, 2022.

[40]

[47]

(48]

[49]

(50]

J. Xiang, Z. Lv, S. Xu, et al., “Structured 3d latents
for scalable and versatile 3d generation,” arXiv preprint
arXiv:2412.01506, 2024.

A. Xie, Y. Lee, P. Abbeel, and S. James, “Language-
conditioned path planning,” in Conference on Robot
Learning (CoRL), 2023.

J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao,
“Set-of-mark prompting unleashes extraordinary visual
grounding in gpt-4v,” arXiv preprint arXiv:2310.11441,
2023.

W. Yu, N. Gileadi, C. Fu, et al., “Language to rewards for
robotic skill synthesis,” in Conference on Robot Learning
(CoRL), 2023.

W. Zhou and D. Held, “Learning to Grasp the Ungras-
pable with Emergent Extrinsic Dexterity,” in Conference
on Robot Learning (CoRL), 2022.

https://arxiv.org/abs/2401.14159
http://manipulation.mit.edu
http://manipulation.mit.edu

	Introduction
	Related Work
	Robot Motion Planning
	Contact-Rich Robot Manipulation
	Vision-Language Models (VLMs) for Robotics

	Problem Statement and Assumptions
	Method: IMPACT
	Obtaining Object Costs using GPT
	Motion Planning with Contacts

	Simulation Experiments
	Experiment Setup in Simulation
	Motion Planning Methods
	Baseline Methods
	Collision-Free Planning
	Language-Conditioned Path Planning (LAPP)

	Evaluation Metrics
	User Study Evaluation

	Simulation Results
	Ablation Study

	Physical Experiments
	Experiment Setup
	Real World Results

	Limitations
	Conclusion

