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Abstract—Despite recent progress in general purpose robotics,
robot policies still lag far behind basic human capabilities in
the real world. Humans interact constantly with the physical
world, yet this rich data resource remains largely untapped in
robot learning. We propose EgoZero, a minimal system that
learns robust manipulation policies from human demonstrations
captured with Project Aria smart glasses, and zero robot data.
EgoZero enables: (1) extraction of complete, robot-executable
actions from in-the-wild, egocentric, human demonstrations, (2)
compression of human visual observations into morphology-
agnostic state representations, and (3) closed-loop policy learning
that generalizes morphologically, spatially, and semantically. We
deploy EgoZero policies on a gripper Franka Panda robot and
demonstrate zero-shot transfer with 70% success rate over 7
manipulation tasks and only 20 minutes of data collection per
task. Our results suggest that in-the-wild human data can serve
as a scalable foundation for real-world robot learning — paving
the way toward a future of abundant, diverse, and naturalistic
training data for robots. Code and videos are available at
https://egozero-robot.github.io.

I. INTRODUCTION

Robots face significant challenges in replicating human gen-
erality and dexterity in the physical world. While deep learning
has fueled progress in domains like language [46, 45], vision
[51, 53, 30, 17, 12], speech [22, 61, 50], and complex games
[57, 44], these successes rely on internet-scale datasets that
are tightly aligned with downstream applications. In robotics,
collecting similarly large and diverse datasets that match real-
world deployment conditions remains a fundamental bottle-
neck [19].

We argue that the data bottleneck stems not from a shortage
of physical labor in the real world, but from the unresolved
challenge of effectively capturing and representing human
behavior for robot learning. Humans perform a wide range
of dexterous tasks in natural environments every day, rep-
resenting an untapped, renewable source of rich, real-world
data. Although recent works have attempted to use human
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demonstrations as supervision for robot learning, they have
limitations to scalability such as additional wearables [60],
robot data [35], multi-camera calibration [26], online fine-
tuning [25], low-precision affordance-based policies [9, 56],
or data processing hacks to cross the human-robot morphol-
ogy gap [60, 35, 38]. Other general vision-based learning
approaches pretrain on large multi-robot datasets [19, 36],
which produce visual representations that are robust across
morphologies present in their training mixes [15, 16, 11, 31],
but have yet to show zero-shot transfer purely from human
data.

In this work, we tackle the ambitious question: can robots
learn zero-shot manipulation skills from only egocentric in-
the-wild human data? To answer this, we introduce EgoZero:
a lightweight framework that enables robots to learn manip-
ulation policies directly from egocentric in-the-wild human
demonstrations, captured using only Project Aria smart glasses
[21]. EgoZero eliminates the need for teleoperation, calibra-
tion, or additional wearables, allowing humans to interact
with the world freely while still providing robot supervision.
Inspired by [26, 39], EgoZero overcomes the morphology
gap by representing states and actions as compact sets of
points. Point-based representations simultaneously unify hu-
man and robot distributions, improve sample efficiency and
interpretability of policy learning, and generalize to new visual
scenes and morphologies. However, egocentric in-the-wild
data collection, does not have access to the multi-camera
calibration setup used in [26, 39] to accurately compute point
representations. Therefore, we introduce methods to accurately
derive state and action representations from raw visual and
odometric inputs.

We evaluate EgoZero by training manipulation policies
on human demonstrations recorded by Aria and deploying
them on a Franka Panda robot. Our policies achieve an
average zero-shot success rate of 70% across tasks such as
grasping, opening, and pick-and-place in unseen real-world
environments — without any robot-collected training data. By
rethinking the data representation and policy learning stack
to be morphology-agnostic from the ground up, EgoZero is
a step toward building robots that can learn from the vast
diversity of real-world human experiences. Our contributions
are as follows: leftmargin=2em

• EgoZero policies achieve a 70% zero-shot success rate on
our tasks, trained only on human data recorded with
Project Aria smart glasses. EgoZero, to our knowledge,
represents the first approach that successfully transfers in-
the-wild, human data into closed-loop policies with no
robot data.

• EgoZero policies exhibit strong zero-shot generalization
properties with only 100 training demonstrations (20
minutes of data collection), demonstrating the robustness,
transferability, and data efficiency of learning from uni-
fied 3D state-action representations.

• EgoZero achieves high success rate when evaluated on
new camera viewpoints, spatial configurations, and object
instances that are often completely out-of-distribution —

validating our proposed method of extracting accurate
3D representations from objects when accurate depth
measurements are not available.

II. RELATED WORKS

Imitation learning. Imitation learning has emerged as a
powerful paradigm in robotics, enabling robots to acquire com-
plex skills by learning directly from real-world demonstrations
[42]. By observing and replicating expert behavior, robots can
bypass the need for hand-engineered solutions to manipulation
tasks, making this approach particularly conducive to do-
mains with high-dimensional state and action spaces [41, 32].
Teleoperation is one of the most widely used methods for
imitation learning from real-world data collection and has been
extensively studied in the robotics literature. In this approach,
a human teleoperator commands a robot to complete a desired
task, recording the robot’s states and actions in the process.
The collected data is then used to train a policy that predicts
actions from states via supervised learning [7, 28, 64, 65, 62].

Learning from human motion. Because teleoperation is
difficult to scale due to its hardware requirements, learning
manipulation directly from humans has become a growing area
of interest. Prior work has explored mapping human grasps
to robot manipulators using vision-based representations like
the “contact web” [33], and more recently, has introduced
semantic constraints to encode the implicit common sense
required for household tasks [29]. Other methods to capture
human proprioception include “inside-out” motion capture
systems such as VR headsets and dongles, which do not
use external sensing devices [2, 5] and are bulky, tethered,
and susceptible to occlusion. SLAM-based wearable camera
systems [60] and VR wrist trackers such as the SteamVR
wrist trackers [4] are vision-based and do not require external
transmitters for localization, but can drift and become inaccu-
rate. Self-tracking vision methods require extensive calibration
and mapping of each environment a priori [60]. For capturing
local information such as finger movements, motion capture
gloves such as Rokoko and Manus Metagloves are highly
accurate [43, 6, 1, 3]. These gloves use resistive strain sensing,
capacitative sensing, and electromagnetic field sensing to track
precise finger information in the local hand frame.

Learning from egocentric video. Because of the accessi-
bility of video, several recent works try to learn and extract
hand data from egocentric videos of humans. Datasets such
as [55, 24, 20, 23, 18] represent large-scale efforts to collect
egocentric videos of humans interacting with objects in diverse
real-world scenes. [39, 26] use point-based representations
to unify human video and robot training data, while [38]
modifies human videos with image editing models to create
robot training data. [35, 49] propose hardware solutions such
as smart glasses and multi-camera data collection platforms to
collect dexterous hand video datasets, while [9, 47, 10, 58, 56]
introduce methods for extracting control-based affordances
for manipulation from vision. Many of the approaches that
estimate hand pose information from one or more camera
inputs are facilitated by hand-pose estimation models such



Fig. 1. EgoZero trains policies in a unified state-action space defined as egocentric 3D points. Unlike previous methods which leverage
multi-camera calibration and depth sensors, EgoZero localizes object points via triangulation over the camera trajectory, and computes action
points via Aria MPS hand pose and a hand estimation model. These points supervise a closed-loop Transformer policy, which is rolled out
on unprojected points from an iPhone during inference.

as [48, 63, 8, 14]. These models are trained with imitation
learning to predict hand keypoints [54] from monocular visual
input. Although effective in many simple domains, these
models are brittle to occlusions, temporally inconsistent, and
lack robustness to background distractors.

III. EGOZERO

In this section, we describe EgoZero, a system for collecting
in-the-wild egocentric human data and training morphology-
agnostic robot manipulation policies.

A. Human-Robot Domain Unification

Project Aria smart glasses. The Project Aria smart glasses
come with several sensors, an SDK, and additional Machine
Perception Services (MPS) [21]. We use the fisheye RGB
camera and 2 SLAM cameras for data capture. We obtain
accurate online 6DoF hand poses, camera intrinsics, and cam-
era extrinsics from MPS. We record demonstrations of RGB
images, 6DoF palm poses, and 6DoF camera extrinsics, which
we denote for a timestep t as (It, Ht, Tt), respectively. We
linearize It as a 1408x1408 RGB image with known camera

projection function P and Ht, Tt ∈ SE(3) are homogeneous
transformation matrices representing the hand pose in camera
frame and the camera frame in world frame, respectively.

Traditionally, S represents the robot’s space of visual states
and A represents the robot’s native executable actions. Similar
to [26], we define the morphology-agnostic state and action
spaces S̃ and Ã, respectively, in egocentric frame. In this
section, we describe how to extract S̃×Ã from a demonstration
{(It, Ht, Tt)}Lt=1.

Unified action space. We define Ã as the concatenated
space of 3D end-effector egocentric coordinates and gripper
closures [60]. Aria only provides Ht, which contains no
end-effector information except for hand pose [35]. We use
HaMeR [48] to compute the 21-keypoint egocentric hand
model, ht ∈ R21×3. Though HaMeR’s end-effector predic-
tions in camera frame are inaccurate, its predictions localized
in hand frame are more reliable. Therefore, we compose
local hand deformation from HaMeR with egocentric hand
information from Aria. First, we construct HaMeR’s palm in
camera frame as Ĥt ∈ SE(3): the translation is the centroid



Fig. 2. Our 7 tasks. Top: open oven door, put bread on plate, sweep board with broom, erase board. Bottom: sort fruit, fold towel, and
insert book in shelf. See Appendix A for full trajectories.

of the ThumbCMC, IndexMCP, and MiddleMCP points; the
rotation is the basis constructed by the Wrist-MiddleMCP and
IndexMCP-MiddleMCP vectors. We then use Ht to correct
Ĥt in egocentric frame through the palm frames. Finally,
we project the corrected hand pose H−1

t Ĥt into the first
frame [60, 35]. This can be represented as a single chain of
homogeneous transformations

h̃t = T−1
0 TtH

−1
t Ĥtht (1)

To detect grasps, we threshold the Euclidean distance be-
tween the thumb and index coordinates. Our final action is
the concatenated vector of thumb and index coordinates and
gripper closure.

Unified state space. We define S̃ as the concatenated space
of egocentric object point sets and robot end-effector actions.
Extracting point representations of objects requires either tri-
angulation from multiple cameras or unprojection with depth,
but the Project Aria glasses provide neither1. Furthermore,
monocular metric depth models are inconsistent and inaccurate
even with grounding, which we show in Appendix D. Instead,
we rely on Aria’s accurate SLAM extrinsics and CoTracker3
[34] to triangulate 2D points over the demonstration trajectory.
This makes the following assumptions: (1) the object is
stationary pre-grasp, (2) there is enough camera movement,
and (3) the environment is not stochastic. As such, the object
state is static for the entire demonstration.

We first label a set of 2D points [39, 26]. For each expert-
labeled point, we use Grounding DINO [40] and DIFT [59]

1Though there are 3 visual cameras (1 RGB, 2 SLAM), they have little
field-of-view overlap, making stereo triangulation unreliable https://github.
com/facebookresearch/projectaria tools/issues/64.

to map its UV coordinates onto the start frame, and track
these points with CoTracker3 [34] to obtain a trajectory of
(Tt, ut) pairs where ut ∈ R2 and Tt ∈ SE(3) is the camera
pose in world frame. We wish to solve for the q∗ in the first
frame (t = 0) that minimizes the pixel reprojection error
in each frame. First, we find a set of inlier frames I via
epipolar geometric consistency and RANSAC triangulation.
CoTracker3 oftentimes predicts points that lag behind camera
movement, giving the impression that a point is further in
space than it actually is. To account for this “stickiness,” we
add a soft depth penalty to prefer closer solutions when there
are multiple points in the cone of solutions that minimize
reprojection error. Therefore, we solve

q∗ = argmin
q

∑
i∈I

∣∣∣∣ui − P
(
T−1
0 Tiq

)∣∣∣∣
ρ
+ λqz (2)

where || · ||ρ is the Huber loss, P is the camera projection
function, and λ is the depth penalty weight. In practice,
(Tt, ut) are accurate, so I contains most of the frames and
optimization converges strongly to a mean inlier reprojection
error of 2-4 pixels per demonstration. Finally, we order and
concatenate all triangulated points to represent the object state,
s̃. We provide comprehensive mathematical equations for this
procedure in Appendix B.

B. Learning a Robot Policy on Human Data

Policy learning. We collect N human demonstrations and
process them into a dataset D = {(s̃(i), ã(i))}Ni=1. We train
a closed-loop Transformer policy [39] πθ : S̃ 7→ Ã with
behavior cloning over D. We model the policy’s predictions
as the mean of a normal distribution and train it to minimize
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Method Open
oven

Pick
bread

Sweep
broom

Erase
board

Sort
fruit

Fold
towel

Insert
book

From vision [27] 0/15 0/15 0/15 0/15 0/15 0/15 0/15

From affordances [9] 12/15 0/15 0/15 0/15 7/15 10/15 5/15

EgoZero - 3D augmentations 0/15 0/15 0/15 0/15 0/15 0/15 0/15

EgoZero - triangulated depth 0/15 0/15 0/15 0/15 0/15 0/15 0/15

EgoZero 13/15 11/15 9/15 11/15 11/15 10/15 9/15

TABLE I. Success rates for all baselines and ablations. All models were trained on the same 100 demonstrations per task, and evaluated
on zero-shot object poses (unseen from training), cameras (iPhone vs Aria), and environment (robot workspace vs in-the-wild). Because of
limited prior work in our exact zero-shot in-the-wild setting, we cite the closest work for each baseline.

the negative log likelihood function

θ = argmin
θ

E(s̃,ã)∼D

[
||πθ(s̃)− ã||2

2σ2

]
(3)

where σ = 0.1 [27, 39]. We augment the policy with a
history buffer input and temporally aggregated action chunking
[27, 39]. We randomly inject noise into the object points and
apply random 3D transformations to the states and actions
of each training episode [60], which we show is necessary
for in-the-wild transfer in Section IV-C. To do so, we sample
random rotations R ∼ U(−π/6,+π/6) radians and transla-
tions t ∼ U(−0.5,+0.5) meters. We remove stationary points
by throwing out consecutive points whose Euclidean distance
is less than 1cm, which is necessary to disambiguate the
association between proprioceptive position and grasp closure.
For longer tasks, we subsample the demonstrations by a factor
of 2. To discard noisy training examples from DIFT failures,
we discard demonstrations whose object points are more than
1 median absolute deviation distance from the closest human
fingertip point.

Policy inference. In inference, we initialize the robot state
30 centimeters above the middle of its workspace. We use
Grounding DINO and DIFT to crop and map the expert-
labeled UV coordinates onto the start frame. We use an
iPhone to represent the stationary egocentric view since it
allows us to unproject points into 3D with accurate depth.
To map the policy’s 3D predictions into robot frame, we
calibrate the iPhone-to-robot transform once at the start of
inference. We binarize the model’s gripper predictions at 0 to
produce gripper actions in {−1, 1}. In our experiments, we
use a Franka Panda gripper robot, whose controller produces
robot-executable actions via the inverse kinematics mapping
Ã 7→ A.

IV. EXPERIMENTS

In this section, we compare EgoZero with baselines adapted
from related works and ablate some of EgoZero’s core com-
ponents. From these comparisons, we demonstrate how our
specific design choices make zero-shot in-the-wild transfer
possible. We also explore the generalization properties that
emerge from EgoZero’s unified state-action representation
space.

A. Experimental Setup
We evaluate EgoZero on a Franka Panda gripper robot. We

use an iPhone to represent the egocentric point of view and
calibrate this to the robot’s frame once per evaluation via
an Aruco tag, which we cover during policy inference. We
collect 100 demonstrations per task, varying the environment
and object positions. We collect zero data in our inference-
time environment. We evaluate our method on the following
manipulation tasks: leftmargin=2em

• Open oven door. The robot arm grasps and pulls down
the handle of an oven door. The position of the oven is
varied for each evaluation.

• Put bread on plate. The robot arm picks up a deformable
slice of bread from the table and puts it on the plate. The
positions of the bread are varied for each evaluation.

• Sweep board with broom. The robot arm picks up a mini
broom from the basket and sweeps a wooden board. The
positions of the broom, basket, and board are varied for
each evaluation.

• Erase board. The robot arm picks up a whiteboard eraser
from the table and erases a whiteboard with it. The
positions of the eraser and board are varied for each
evaluation.

• Sort fruit into bowl. The robot arm is prompted to pick
up one of a lemon, lime, and tangerine, and drop it into
a bowl. The positions of the fruits and bowl are varied
for each evaluation.

• Fold towel. The robot arm lifts one end of the towel
(closest to the camera) and folds it onto the other end
of the towel. The position of the towel is varied for each
evaluation.

• Insert book in shelf. The robot arm picks up a book and
inserts it into a shelf. The positions of the book and shelf
are varied for each evaluation.

B. Baselines
In this section, we demonstrate why our specific formulation

of policy learning enables zero-shot transfer from in-the-wild
human behaviors. Because no prior work operates under the
same assumptions as ours — learning a closed-loop policy
in-the-wild, untethered, without robot data, from only smart
glasses — we adapt some ideas inspired by past works to our
setting.



Fig. 3. Distribution of bread keypoints for “Put bread in plate” task. The columns are projections of the 3D space onto each 2D plane. The
policy generalizes to object poses far outside of its training volume and begins to fail when the objects are near the limits of its augmented
volume.

Learning from images. We implement a variation of
Baku [27] that predicts actions in our unified action space
from image inputs. Due to the large differences in visual
distributions between humans and robots, it is difficult to learn
a closed-loop policy from human video with zero-shot robot
transfer. [35] only shows experiments using human video from
Aria glasses as supplementary to robot data, requiring careful
renormalization of the human data distribution. Furthermore,
Aria’s fisheye lens exacerbates this problem by warping the
2D-3D correspondence non-uniformly across space and time.
Learning 3D distributions from 2D context clues becomes
more reliable with abundant visual data produced by similar
robot and camera distributions [37, 11, 31].

Learning from affordances. [9, 56] explores learning from
egocentric human video data without robot data in affordance-
based settings. Typically, this is done by relying on an open-
loop trajectory generated by a pretrained grasp model. We
ablate our closed-loop formulation by predicting propriocep-
tive landmarks similar to [9] — specifically, the initial and
final grasp, executing a linear trajectory between them during
inference. Although policy learning from affordances is simple
with 3D representations, it fails on tasks that require complex

nonlinear motions, such as our “put bread in plate” and “erase
board ” tasks. When deployed on the robot, these policies
exhibit incorrect behavior: the robot attempts to drag the
bread onto the plate and pushes the board with the eraser. In
other partially successful tasks, the policy fails by generating
trajectories that are too simple, often bumping other objects
during execution. These failures demonstrate that closed-loop
policies are necessary to learn complex motions with greater
precision, even when the object state is not tracked.

C. Ablations

In this section, we explore the critical design components
that make zero-shot transfer from in-the-wild human data
possible. Through our ablative experiments, we argue that the
fully egocentric framework necessitates some aspects of policy
learning that were not important in more constrained settings.

3D augmentations. Although 3D augmentations have been
explored before [60], we show that they are indeed necessary
for zero-shot in-the-wild transfer. In the unified 3D state-
action space, the policy learns a dense 3D-to-3D mapping [26].
Without 3D augmentations, the policy learns a smaller and
sparser 3D-to-3D mapping volume. As a result, the policy does



Fig. 4. Object semantic generalization. Human demonstrations are done with only black ovens (top). The policy transfers zero-shot to
the robot with the same oven (middle) and also generalizes to a new oven instance (bottom). The points are color-coded to represent the
correspondence.

not interpolate between 3D positions as well and is less robust
to new positions. Therefore, it is often out-of-distribution when
given a new egocentric view. We demonstrate that, when
trained with 3D augmentations, our policies generalize to
object configurations that are many standard deviations outside
of the volume of their training data. Although our policy
learning framework is similar to [39, 26], these works do not
need 3D augmentations to show good success rates, implying
that learning robust policies on egocentric data introduces
extra complexity in learning generalizable representations. We
visualize the training and inference distributions of object
points in Figure 3.

Monocular depth estimation. The Aria glasses do not
provide a way of extracting ground truth depth information:
(1) it cannot triangulate objects reliably since the overlapping
field-of-view between all cameras is narrow; (2) it does not
have any built-in lidar or depth sensors. Therefore, we localize
the object via triangulation over the camera trajectory to obtain
its 3D information. To show that monocular metric depth
models are not a viable option, we ablate our triangulation
method with unprojection from a metric depth model [13].
We observe that the best metric depth models, even when
grounded with many Aruco tags in the scene, produce depth
measurements of >5cm error. This suggests that the depth
maps are warped unevenly, potentially by the distortion caused

by Aria’s fisheye. All policies trained with estimated depth
fail unequivocally. We describe our grounding method in
Appendix D.

D. Zero-shot generalization

Object pose generalization. In both data collection and
robots evaluation, we vary the poses of the objects. If there
are multiple objects, we also vary their locations relative to
each other. We observe that the use of correspondence with 3D
state representations encodes the pose of the object [39, 26]
and allows our policies to generalize from in-the-wild data.
We notice that there is much more spatial diversity in our
human demonstrations than what the robot can access in its
workspace. This diversity, combined with 3D augmentations,
regularizes the policy to learn a more general solution across
a larger 3D volume, which enables zero-shot transfer to the
robot. We constrain the diversity of object poses to represent
what a human will realistically manipulate (i.e. the oven door
is visible to the camera).

Object semantic generalization. Following [39, 26], we
also demonstrate that 3D representations allow for zero-shot
object category generalization. Because our training and infer-
ence images are so different (Aria fisheye vs iPhone pinhole),
we introduce Grounding DINO to crop images to improve
DIFT’s success rate; this is not something that [39, 26] im-



plement because their cameras and backgrounds are identical
between training and inference. Because Grounding DINO is
language-conditioned, we simply prompt it with the object
category (i.e. “a toaster oven.”) to allow it to generalize to
entirely new object instances. This ensembling of pretrained
models compresses visual diversity into geometric abstractions
that allow EgoZero to generalize across visual distributions in
the egocentric setting.

Camera generalization. One of the biggest limiting factors
of vision-based policies is that learning invariance to small
changes in individual pixels is data intensive. For a policy to
generalize to novel viewing angles, distances, and cameras,
it must be trained on a large amount of data from similar
visual distributions. For example, [11] is trained on 10k+
hours of cross-embodiment data, but its zero-shot performance
is significantly lower when the inference camera (and end-
effector) is different from the one used to collect its robot
training data. To navigate this issue, [35] uses Aria glasses
for human data collection, robot data collection, and policy
inference, but still require several hours of both human and
robot data and careful renormalization to reach good success
rates. Because EgoZero learns policies from 3D point sets,
EgoZero is completely camera-agnostic. We demonstrate this
in all our experiments by using an iPhone in inference.

Human-scale generalization. For each task, we collect
data in 2-3 different environments, on tabletops of different
heights, with various background distractors, with multiple
unique demonstrators. We perform our demonstrations moving
around, standing still, and sitting down. The variance in human
demonstrators provides added diversity in the training data.
These differences in height and grasp are still encoded in the
same unified representation space.

E. Limitations

Limitations of 3D representations. The largest source of
error during inference comes from the correspondence model
DIFT [59]. Correspondence encodes pose by ordering the state
space, making policy learning sample efficient [39, 26]. At
larger data scale, pose information can be learned directly from
dense unordered geometric information (i.e. using grounded
segmentation models [52]). The correspondence errors are a
symptom of perhaps a more general limitation: that the policy
is upper-bounded by the accuracy of its 3D point inputs.
Though policy learning is made simple with 3D points, it does
not have information to correct 3D measurement errors.

Limitations of triangulation. We rely on Structure-from-
Motion to localize objects over Aria’s pre-grasp trajectory.
Although this algorithm is less robust when the camera has
limited movement, we find that the camera movement from
natural task demonstration is usually sufficient. Furthermore,
triangulation requires stationary objects, which means that
we cannot track objects. In the future, stereo cameras or
cheap lidar can remove these constraints and allow closed-
loop policy learning in stochastic settings. We hope that depth
estimation will become easier with better hardware design.

Limitations of hand models. In this work, we use [48]
and Aria’s hand pose to extract a complete action space, both
of which introduce slight inaccuracies. Aria’s hand pose does
not always predict the same location on the hand and [48]
predicts inconsistently incorrect rotational and translational
components on the hand. Even when carefully Equation 1
is tuned, the action labels contain 1-2cm error, preventing
the policy from solving high-precision tasks. We hope that
hand estimation methods will become more reliable with better
research and hardware design.

V. DISCUSSION

In this work, we presented EgoZero, a minimal system
that trains zero-shot robot policies on in-the-wild egocen-
tric human data without any robot data. We formalize
the morphology-agnostic state-action spaces from prior works
and demonstrate how point representations hold the same
properties in egocentric in-the-wild settings. Because EgoZero
optimizes for data collection ergonomics, we also demonstrate
how to extract unified state and action representations from
human data recorded with the Project Aria smart glasses as the
only hardware. As a result, we introduce novel data processing
and policy learning design; we demonstrate the importance
of each of these components in our baseline and ablation
experiments. Although EgoZero represents an initial proof-
of-concept of how to achieve strong zero-shot transfer from
human data, we also acknowledge a handful of limitations,
many of which we hope will improve as hardware and robot
learning methods improve together.

Towards human-centric robotics. Ultimately, human data
carries huge potential in its scalability and morphological com-
pleteness. We hope that EgoZero will serve as a framework
on which future research can extend to fully dexterous and
bimanual setups. We hope that our work offers a potentially
new theme in robots that is more human-centric, scalable, and
abundant.
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APPENDIX

A. Human Demonstrations

Fig. 5. Open oven door.

Fig. 6. Put bread on plate.

Fig. 7. Sweep board with broom.

Fig. 8. Erase board.

Fig. 9. Sort fruit in bowl.

Fig. 10. Fold towel.

Fig. 11. Insert book in shelf.

B. Triangulating Object Keypoints
We estimate 3D coordinates q∗ ∈ R3 of an object point in

the world frame at t = 0 from 2D observations {(Ti, ui)}Ni=1,
where ui ∈ R2 is the UV coordinate tracked in frame i, and
Ti ∈ SE(3) is the camera-to-world transformation at frame i.
Let K denote the camera intrinsics and Pi = K[Ri | ti] =
KT−1

i denote the projection matrix from world to image space
at frame i.

a) 1. Epipolar Filtering.: To discard geometrically in-
consistent views, we apply pairwise epipolar constraints.
Given two frames i and j, we compute the fundamental matrix:

Fij = K−T [tij ]×RijK
−1, (4)

where Rij = RjR
⊤
i , tij = tj − Rijti, and [·]× is the

skew-symmetric matrix. A frame i is retained if it satisfies the
epipolar constraint with at least m other frames:



Fig. 12. Monocular depth estimation [13] calibrated to Aruco tags in the scene.

∣∣u⊤
j Fijui

∣∣ < ϵ for at least m views. (5)

b) 2. Robust RANSAC Triangulation.: Using the filtered
inlier views, we perform RANSAC over subsets of size k to
find the best triangulated candidate q∗ minimizing reprojection
error:

qRANSAC = argmin
q

∑
i∈I

⊮
(∥∥ui − P(T−1

i q)
∥∥
2
< τ

)
. (6)

c) 3. Least Squares with Depth Bias.: We refine qRANSAC
via nonlinear least squares with a Huber loss and a soft depth
penalty:

q∗ = argmin
q∈Ω

∑
i∈I

∥∥ui − P(T−1
i q)

∥∥
ρ
+ λqz, (7)

where ||·||ρ is the Huber loss, qz is the depth (z-coordinate in
world frame), λ is the depth bias coefficient, and Ω = [l,u] is
a bounding box constraint (i.e. qz > 0). This formulation en-
courages geometrically consistent triangulation while avoiding
ambiguous far-away solutions in cases of degenerate motion
or lag in Cotracker3 predictions.

d) 4. Unified Object Representations.: We repeat Steps
1-3 for each point that we label on the object, and concatenate
each triangulated object point to obtain the object representa-
tion for the entire trajectory s̃.

C. Policy Inference

Algorithm 1 EgoZero Policy Inference

1: Obtain object keypoints on first frame using DIFT [59] on
annotated dataset frame

2: Initialize s̃ = []
3: for u in DIFT labels do
4: Read depth at u from iPhone
5: Unproject u with depth into egocentric frame to obtain

xu

6: s̃← [s̃, xu]
7: end for
8: Initialize robot state ã0 and history buffer H = [ã0, ..., ã0]

of length h
9: for t in rollout do

10: Compute action chunk (ãt, ..., ãt+ℓ) ∼ π(s̃t, H) and
apply temporal aggregation to get ãt

11: Parse gripper action g ← bool(ãt > 0)
12: Execute [ãt, g] on robot
13: Update buffer H ← [H, ãt]−h

14: end for

D. Monocular Depth Estimation

We record a walkaround of 5 Aruco tags on the table from
the Aria glasses and fit an affine scale/shift that minimizes
the residual of the depth map at these Aruco tags. Even
after calibration, we see that the depth signal deviates with
variance from the ground truth Aruco detection, suggesting
that monocular depth models are potentially spatio-temporally
warped. See Figure 12 for visualizations of this experiment.
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