
Flexible Multitask Learning with
Factorized Diffusion Policy

Chaoqi Liu1, Haonan Chen1, Sigmund H. Høeg2∗, Shaoxiong Yao1∗,
Yunzhu Li3, Kris Hauser1, Yilun Du4

1University of Illinois at Urbana-Champaign
2Norwegian University of Science and Technology

3Columbia University 4Harvard University

Abstract—In recent years, large-scale behavioral cloning has
emerged as a promising paradigm for training general-purpose
robot policies. However, effectively fitting policies to complex
task distributions is often challenging, and existing models
often underfit the action distribution. In this paper, we present
a novel modular diffusion policy framework that factorizes
modeling the complex action distributions as a composition of
specialized diffusion models, each capturing a distinct sub-mode
of the multimodal behavior space. This factorization enables
each composed model to specialize and capture a subset of the
task distribution, allowing the overall task distribution to be
more effectively represented. In addition, this modular structure
enables flexible policy adaptation to new tasks by simply fine-
tuning a subset of components or adding new ones for novel tasks,
while inherently mitigating catastrophic forgetting. Empirically,
across both simulation and real-world robotic manipulation
settings, we illustrate how our method consistently outperforms
strong modular and monolithic baselines, achieving a 24%
average relative improvement in multitask learning and a 34%
improvement in task adaptation across all settings. Website:
factorized-diffusion-policy.github.io.

I. INTRODUCTION

The increasing availability of large-scale visuomotor im-
itation learning datasets has opened new opportunities for
training general-purpose robot policies across a wide range of
manipulation tasks [1, 2, 3]. However, the inherent diversity
and multimodality of these datasets pose major challenges:
traditional monolithic policies often struggle to generalize
across tasks, represent multiple behavior modes, or adapt
efficiently to new skills [2, 4].

To address these limitations, modular policy architectures,
most notably Mixture-of-Experts (MoE) models [5, 6], have
emerged as a promising direction. By decomposing the policy
into specialized components, modular methods improve scala-
bility and reuse across tasks [2, 7, 8, 9, 10]. Yet, existing MoE-
based approaches often suffer from training instability [6],
lack a principled probabilistic formulation, and produce expert
modules with unclear or overlapping roles [8, 11], limiting
their interpretability.

We propose Factorized Diffusion Policy (FDP), a simple
yet effective modular policy architecture. FDP decomposes
the policy into multiple diffusion components (Fig. 1a), each
capturing a distinct behavioral mode, which are dynamically
composed at inference time via an observation-conditioned

router (Fig. 1c). Instead of discrete expert selection as in
standard MoE architectures, FDP uses continuous score aggre-
gation, enabling stable training, avoiding routing imbalance,
and promoting clearer specialization across components. FDP
is grounded in compositional diffusion modeling [11, 12, 13],
where aggregating scores corresponds to sampling from the
product of distributions, providing a principled probabilistic
interpretation and a natural formulation as constraint satis-
faction. The modular structure further enables efficient task
adaptation: we extend the policy by introducing new diffu-
sion components initialized via upcycling [6] from existing
components (Fig. 1b), allowing efficient skill expansion with-
out retraining the entire policy. This factorization improves
multitask learning, supports scalable adaptation, and enhances
interpretability.

We validate FDP through extensive experiments in simu-
lation benchmarks MetaWorld [14] and RLBench [15], and
further demonstrate its practical benefits in real-world robotic
manipulation. Our contributions are summarized as follows:
(1) We introduce a modular diffusion policy architecture that
composes behavior-specialized components via observation-
conditioned compositional sampling. (2) We demonstrate that
our compositional framework improves multitask performance
and enables interpretable sub-skill decomposition across diffu-
sion modules. (3) We propose a simple and effective strategy
for adapting to new tasks by selectively tuning or augmenting
existing components, achieving strong sample efficiency and
modular reuse.

II. RELATED WORKS

Diffusion Models for Robotics. Diffusion models have
emerged as a powerful tool for modeling complex distribu-
tions, achieving strong performance in image [16, 17, 18] and
video generation [19, 20]. Their stable training and generative
flexibility have led to increasing adoption in robotic domains,
including video-conditioned policy learning [21, 22], grasp
synthesis [23], trajectory planning [24, 25, 26], and closed-
loop visuomotor control. Diffusion Policy (DP) [27] demon-
strated that diffusion models can be used to learn reactive
visuomotor policies from demonstrations, achieving state-of-
the-art performance in single-task imitation learning.

https://factorized-diffusion-policy.github.io/

𝒐𝑡

𝜺1(𝒂𝑡𝐾, 𝒐𝑡)

𝜺2(𝒂𝑡𝐾, 𝒐𝑡)

𝜺3(𝒂𝑡𝐾, 𝒐𝑡)

𝒂𝑡𝐾

Router

𝒂𝑡𝐾−1

C
om
position× 𝑲

𝜺1(𝒂𝑡𝐾, 𝒐𝑡)

𝒐𝑡

𝜺2(𝒂𝑡𝐾, 𝒐𝑡)

𝜺3(𝒂𝑡𝐾, 𝒐𝑡)

𝒂𝑡𝐾

Router

𝒂𝑡𝐾−1

C
om
position× 𝑲

𝜺4(𝒂𝑡𝐾, 𝒐𝑡)
𝒐 observation

𝒂 action

trainable

frozen

Composition

∇𝐸3

∇𝐸1

∇𝐸2

𝑤1 𝑤2 𝑤3

de
no
is
in
g

de
no
is
in
g

(a) (b) (c)

Fig. 1: Overview of FDP. (a) Given an observation ot, multiple diffusion experts predict score estimates εi(a
K
t ,ot) at each denoising step. A lightweight

router network computes observation-dependent weights {wi}, which are used to compose the final score as a weighted sum (see (c)). The composed score
guides the iterative denoising process over K steps to generate an action at. (b) This compositional structure enables FDP to model complex multimodal
distributions and supports modular adaptation via selective tuning or addition of diffusion components.

Multitask Imitation Learning and Adaptation.
Traditional approaches to multitask imitation learning often
rely on monolithic networks [1, 28] or language-conditioned
policies [4, 29], which limit scalability, reusability, and
interpretability. To address these limitations, Sparse Diffusion
Policy (SDP) [8] introduces MoE layers in diffusion models,
activating sparse expert sets based on observations. While this
modular design enables expert reuse and policy expansion, it
suffers from instability and load imbalance [6]. Mixture-of-
Denoising-Experts (MoDE) [9] conditions expert routing on
noise level, distributing learning across noise levels, making
its experts less interpretable or transferable across tasks. In
contrast, FDP composes diffusion models through continuous
score aggregation, avoiding hard expert selection and ensuring
all components are jointly optimized. This promotes stable
optimization, clear specialization, and better load balancing.
While maintaining modular extensibility like MoE designs,
FDP allows efficient adaptation by adding new components
without overwriting prior skills.

III. FDP: FACTORIZED DIFFUSION POLICY

We aim to develop a modular policy architecture that scales
to diverse manipulation tasks and supports efficient adaptation
to new ones. Traditional monolithic policies struggle with
the complexity and multimodality of real-world action dis-
tributions, while modular alternatives like Mixture-of-Experts
(MoE) suffer from training instability and poor expert in-
terpretability. Our proposed FDP, which directly factorizes
the policy into a set of composable diffusion models. Each
component captures a distinct behavioral mode, and the final
action is produced via a weighted aggregation of these mod-
ules conditioned on the current observation (Fig. 1).

A. Probabilistic Policy Modeling
We factorize the action distribution as the product of a set

of composed distributions

p(at|ot) ∝
∏
i

pi(at,i|ot)wt,i , (1)

where {wt,i} are observation-dependent weights associated
with each component distribution. Intuitively, p(at|ot) repre-
sents the intersection (logical AND) of individual distributions,
assigning high likelihood to samples commonly favored by
all component distributions. Moreover, each diffusion compo-
nent pi(at,i|ot) can be interpreted as imposing a behavioral
constraint (e.g., collision avoidance, precise grasping) [30].
The composed distribution thus captures the intersection of
constraints, naturally framing action generation as constraint
satisfaction while maintaining a probabilistic interpretation.

Denoising Diffusion Probabilistic Model (DDPM) frame-
work [16] is adopted to model each component distribution
pi(at,i|ot). To sample from each component, we start from a
noisy action sample aKt,i ∼ N (0, I), and iteratively refine it
using a noise prediction network εθi(a

k
t,i,ot, k), progressively

denoising over k steps:

ak−1
t,i = αk

(
akt,i − γk εθi(akt,i,ot, k) +N (0, σ2

kI)
)
, (2)

where αk, γk, and σk define the noise schedule. This process
closely resembles Stochastic Langevin Dynamics [31], with
εθi estimating the score function ∇ log pi(at,i|ot) [32].

Training of DDPM minimizes the mean squared error
(MSE) between the true added noise ϵk and the network
prediction:

LMSE = ∥ϵk − εθ(a
0
t,i + ϵk,ot, k)∥22, (3)

where a0t,i is a clean trajectory sample valid under distri-
bution pi(at,i|ot). Minimizing this loss teaches the network

to progressively denoise noisy actions conditioned on obser-
vations.

B. Compositional Sampling and Routing

We next discuss how can we sample from the actual action
distribution p(at|ot) given DDPM formulation of component
distributions {pi(at,i|ot)}, as well as how to automatically dis-
cover each component distribution and optimize corresponding
diffusion models jointly.

One way of viewing the composition of distributions is
through the lens of energy-based models (EBM) [33]. Assume
weights {wt,i} are given, and each weighted component
distribution is parameterized as pi(at,i|ot) ∝ e−wt,iEi , then
the actual action distribution can be expressed as p(at|ot) ∝
e−

∑
i wt,iEi [33]. Therefore, iterative sampling can be per-

formed via Langevin dynamics:

ak−1
t = akt − γk

∑
i

wt,i∇ak
t
Ei(a

k
t ,ot) + ξk, (4)

where γk controls the step size and ξk introduces Gaussian
noise. Note that we can bridge EBM with score-matching
diffusion models [2, 11, 13, 34], which updates Equ. 4 as

ak−1
t = akt − γk

∑
i

wt,i εθi(a
k
t ,ot, k) + ξk. (5)

To optimize diffusion components jointly, we update MSE
loss in Equ. 3 to

LMSE = ∥ϵk −
∑
i

wt,i εθi(a
0
t + ϵk,ot, k)∥22, (6)

where a0t is a demonstration trajectory sample. Then all
diffusion components are optimized jointly end-to-end.

The weights {wt,i} are predicted by a lightweight
observation-conditioned neural network, referred to as router,
which is optimized along with other diffusion components.
This brings the last piece of FDP architecture. The pseudocode
for training and inference are provided in Algo. 1 and Algo. 2.

Compared to discrete MoE routing, our compositional ap-
proach avoids routing instability and expert imbalance [6]
by assigning continuous, observation-dependent weights to all
components, rather than selecting a hard subset. In MoE,
only a few experts are activated at each step, which can
lead to underutilization of some experts and overfitting or
saturation in others, especially when routing distributions are
sharp or poorly calibrated. In contrast, our method aggregates
contributions from all components via soft score-weighted
composition, ensuring all modules remain active during opti-
mization. Additionally, because all components participate in
every training step, they receive gradient signals consistently,
which encourages functional specialization.

C. Multitask Learning and Adaptation

Multitask Learning. This factorization is particularly well-
suited for multitask imitation learning, where action distribu-
tions are inherently multimodal due to diverse object proper-
ties, contact dynamics, and task goals. In contrast to mono-
lithic policies that must capture all modes simultaneously, FDP

distributes complexity evenly across diffusion components,
each modeling a coherent subspace of behaviors. Unlike MoE
policies, where skills may span combinations of experts across
layers, our formulation yields interpretable and disentangled
sub-skills.

Adapting to New Tasks. The modularity of FDP also
enables efficient adaptation to unseen tasks. Instead of re-
training the full model, we adapt by introducing a new diffu-
sion component εθnew , initialized via upcycling [6] – copying
weights from existing components. The updated score function
becomes:

εadapt(a
k
t ,ot, k) =

∑
i

wi εθi(a
k
t ,ot, k)+wnew εθnew(a

k
t ,ot, k),

(7)
where only εθnew and the new router are updated during adap-
tation, using the training loss in Equ. 3. All previously trained
components {εθi} are frozen. Freezing existing components
ensures that the optimization focuses solely on capturing novel
task dynamics without disrupting existing capabilities, thereby
mitigating catastrophic forgetting. Such selective adaptation
significantly reduces the number of trainable parameters and
the amount of supervision required. In contrast, MoE mod-
els, where overlapping expert roles make modular reuse and
analysis more difficult.

Finally, FDP supports heterogeneous architectures – dif-
fusion models can vary in architecture and size, enabling
scalable allocation of computation to match task complexity.
This extensibility makes FDP broadly applicable in diverse
and evolving robotic domains.

IV. EXPERIMENTS

In this section, we aim to empirically investigate several
key questions regarding our proposed policy architecture:
(1) Whether factorizing the complex action distribution into
simpler distributions captured by smaller diffusion models can
improve overall policy learning and performance. (2) Whether
the modular structure of FDP, composed of multiple diffusion-
based expert modules, facilitates more efficient and effective
task transfer and adaptation. (3) How different adaptation
strategies compare, highlighting trade-offs such as data effi-
ciency, policy performance, and compute.

A. Experiments Setup

We evaluate policies on 16 tasks (Fig. 2) across Meta-
World [14] and RLBench [15]. Demonstrations are generated
by benchmark-provided scripted experts. Real-world experi-
ments use a UR5e arm with a Robotiq gripper and a RealSense
D415 camera (Fig. 3a). We evaluate policies on four distinct
tasks: cube red, cube blue, hang low, and hang high. The
tasks cube-X involve picking up a cube of color X from the
tabletop and placing it into a designated bowl. The hang-X
tasks require the robot to grasp a mug from the tabletop and
precisely hang it on the X branch of a mug stand positioned
on the table. Illustrations and setups of these real-world tasks
are shown in Fig. 3. More details are provided in Appendix C.

Algorithm 1 FDP Training

Require: Dataset D, Denoisers {εθi}, ROUTERψ
1: while not converged do
2: Sample (a,o) ∼ D and noise ϵk

3: {wi} ← ROUTERψ(o)

4: L ←
∥∥ϵk −∑i wi εθi(a+ ϵk,o, k)

∥∥2
2

5: ∀i, θi ← θi +∇θiL
6: ψ ← ψ +∇ψL
7: end while
8: return {εθi}

Algorithm 2 FDP Inference

Require: Denoisers {εi}, ROUTER, Observation ot
1: {wt,i} ← ROUTER(ot)
2: aKt ← N (0, I)
3: for k ← K,K − 1, ..., 1 do
4: ∇ak ←

∑
i wt,i εi(a

k
t ,ot, k)

5: ak−1
t ← akt − γk∇ak +N (0, σkI)

6: end for
7: at ← a0t
8: return at

Fig. 2: Simulation environments. We evaluate FDP on 10 MetaWorld tasks and 6 RLBench tasks.

UR5e

RealSense Robotiq
D415 soft gripper

..

.,

"'

..

" ..

.. ..

..

.. -

..

..

-

..

- - -

• -

- .. -

- - - - - - ..

-, -

- .,, -

.. "' - -, .. • ..

., • .. - .. .,

.. .,, - - .. • •

"' .., - .. ., .., -,

., "' .. .i "'

..i, .. u OU

(a) Real-world workspace. (b) Illustration of hang-X (c) Illustration of cube-X

Fig. 3: Real-world setup and task illustrations. (a) Workspace setup with a UR5e arm, Robotiq gripper, and RealSense D415 camera. (b) High-level
illustrations. Example rollouts can be found in Fig. 4.

B. Implementations

All policies take RGB images and joint angles as input and
predict absolute joint angle trajectories. A history window
of size 2 is used, with 16-step trajectories predicted and 8
steps executed. We use DDPM [16] with 100 diffusion steps
during training and inference. We compare FDP against three
baselines: DP [27], a monolithic diffusion policy; SDP [8],
a MoE-based diffusion policy with observation-conditioned
routing; and MoDE [9], a MoE variant with routing based
on noise levels. Task-specific routing and goal conditioning
are removed for fair comparison. We follow the original con-
figurations used in each baselines, and proportionally reduce

the model size of MoDE to match others. We refer readers
to the original papers for more details on architecture and
training. In FDP, four U-Net diffusion modules are composed.
For adaptation, we adopt the upcycling strategy [6] to initialize
new MoE experts or diffusion components from existing ones.
More details are available in Appendix D.

C. Multitask Learning

We first investigate whether decomposing complex motion
distributions into simpler, behavior-specialized components
can improve policy performance in multitask settings.

Simulation. We evaluate FDP on six MetaWorld tasks (25
demonstrations each) and four RLBench tasks (50 demonstra-

Fig. 4: Qualitative real-world rollouts. Each row shows execution for cube-X (left) and hang-X (right) tasks. Successes are shown in the top row; failure
cases (bottom) illustrate challenges faced by baselines.

Policy MetaWorld RLBench

DP 0.725 0.569
SDP 0.717 0.319

MoDE 0.733 0.394
FDP 0.750 0.638

TABLE I: Multitask learning in simulation. Average success rate on
MetaWorld (door open, drawer open, assembly, window close, peg insert,
hammer) and RLBench (toilet seat up, open box, open drawer, take umbrella
out) tasks. Evaluated over 40 episodes per task. See Table VI for full results.

tions each). All methods are evaluated over 40 rollouts per
task, with results shown in Table I. The DP baseline performs
surprisingly well, particularly on tasks like drawer open,
assembly, and hammer, which primarily involve reaching and
grasping and exhibit fewer multimodal behaviors – making
them easier to solve with a single model. Among modular
baselines, SDP underperforms due to instability common in
training MoE architectures [6]: too few experts limit expres-
siveness, while too many can cause overfitting and noisy
routing. MoDE performs reasonably by routing based on the
noise level, but still inherits instability from MoE training [9].
In contrast, FDP’s compositional structure avoids abrupt rout-
ing decisions by continuously composing diffusion component
outputs via score-weighted aggregation, which enables stable
training and more balanced component specialization of the
multimodal action distributions.

Policy Cube Red Hang Low Avg.

DP 0.700 0.800 0.750
SDP 0.750 0.650 0.700

MoDE 0.700 0.800 0.750
FDP 0.750 0.850 0.800

TABLE II: Real-world multitask success rates. Average over 20 trials. Tasks:
cube red and hang low.

Real-world. We further evaluate our method in real-world
settings on two tasks: cube red (300 demonstrations) and
hang low (200 demonstrations). 20 samples are used for
evaluation, and results are summarized in Table II. The DP
baseline often overfits to specific joint trajectories, failing to
attend to RGB inputs due to the multimodal and perceptually
complex nature of the tasks. By contrast, FDP captures diverse
behavior patterns more effectively by decomposing the action

distribution across interpretable sub-modules. This results in
higher success rates. Fig. 4 shows qualitative failure cases
from baseline methods, which struggle to capture the complex
distribution, resulting in imprecise end-effector poses and
frequent task failures.

D. Task Transfer and Adaptation
In this section, we evaluate the adaptability of FDP in

adapting to novel tasks under limited data. We compare several
adaptation strategies: full-parameter fine-tuning, partial fine-
tuning of the router, observation encoder, and selective module
expansion via new expert components.

Method Policy MetaWorld RLBench

Full Param.

DP 0.900 0.800
SDP 0.892 0.763

MoDE 0.917 0.813
FDP 0.917 0.825

Router + Obs. Enc.
SDP 0.833 0.338

MoDE 0.833 0.438
FDP 0.858 0.463

+ New Module
SDP 0.900 0.450

MoDE 0.908 0.600
FDP 0.925 0.850

TABLE III: Adaptation in MetaWorld (door open, drawer open, assembly,
window close, peg insert, hammer) and RLBench (toilet seat up, open box,
open drawer, take umbrella out). Pretrained on tasks in Table I. Full results
in Table VII.

Simulation. We evaluate adaptation performance on four
MetaWorld tasks and two RLBench tasks, using 10 and 25
demonstrations per task, respectively. We run 60 evaluations
for MetaWorld and 40 evaluations for RLBench. As shown
in Table III, full-parameter fine-tuning achieves strong per-
formance but is computationally intensive. Partial fine-tuning
– modifying only the router or including the observation en-
coder – offers limited gains. In contrast, adding new modules
(two expert blocks per layer for MoE-based methods and
a new diffusion component for FDP) consistently improves
performance. FDP benefits most from this strategy, leveraging
its compositional structure to reuse prior knowledge while
efficiently learning new behaviors.

Real-world. We further evaluate adaptation on two real-
world tasks, each with 100 demonstrations. 20 samples are

Method Policy Cube Blue Hang High Avg.

Full Param.

DP 0.750 0.850 0.800
SDP 0.700 0.800 0.750

MoDE 0.750 0.800 0.775
FDP 0.850 0.750 0.800

Router + Obs. Enc.
SDP 0.500 0.450 0.475

MoDE 0.500 0.550 0.525
FDP 0.550 0.550 0.550

+ New Module
SDP 0.650 0.550 0.600

MoDE 0.700 0.650 0.675
FDP 0.850 0.850 0.850

TABLE IV: Adaptation in real-world. Evaluated on cube blue and hang
high. Pretrained on cube red and hang low. See Table VIII for full results.

used for evaluation. Results in Table IV echo the simulation
trends. While full-parameter fine-tuning performs reasonably
well, it is resource-intensive. Partial fine-tuning yields modest
improvements. The most effective strategy across all methods
involves introducing new modules. Under this setting, FDP
achieves the best performance, highlighting the advantage of
its modular design for rapid and robust adaptation even in
complex, real-world scenarios.

V. ANALYSIS

A. Scaling of Number of Diffusion Components

We study how the number of diffusion components in FDP
affects multitask performance. Experiments are conducted on
selected tasks from MetaWorld (door close, drawer close,
disassemble, window open) and RLBench (toilet seat up, open
box, open drawer, take umbrella out). As shown in Table V,
increasing the number of components from 2 to 4 consistently
improves performance, indicating greater expressiveness and
better sub-skill specialization. Beyond 4 components, perfor-
mance plateaus, suggesting diminishing returns. Overall, 4
components provide a good trade-off between model complex-
ity and performance for the tasks considered. We recommend
using 4 components as a reasonable starting point, though
some hyperparameter tuning may improve performance.

Comp MetaWorld RLBench

2 0.867 0.544
3 0.900 0.588
4 0.913 0.638
5 0.913 0.644
6 0.917 0.650
7 0.919 0.656

TABLE V: Multitask performance of FDP with different numbers of
components on MetaWorld and RLBench. Performance improves up to 4
components and plateaus thereafter.

B. Scaling of Number of Demonstrations

Multitask Learning. We evaluate how FDP benefits from
increasing amounts of demonstration data. As shown in
Fig. 5a, performance improves steadily with more demon-
strations. FDP consistently outperforms baselines, with par-
ticularly large gains on RLBench where complex, contact-rich
interactions make effective decomposition especially valuable.

5 10 15 20 25 10 20 30 40 50
Number of Demonstrations

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e MetaWorld RLBench

SDP
MoDE
FDP

(a) Multitask Learning

5 10 15 20 25 10 20 30 40 50
Number of Demonstrations

0.6

0.8

1.0

Su
cc

es
s R

at
e MetaWorld RLBench

Full Params.
+ New Module

(b) Task Adaptation

Fig. 5: Performance scaling with number of demonstrations. (a) Multitask
learning success rate of FDP across tasks listed in Table I. (b) Task adaptation
performance on tasks from Table III.

Task Adaptation. We analyze how adaptation performance
scales with the number of demonstrations, and compare the
proposed + New Module strategy with full-parameter fine-
tuning. As shown in Fig. 5b, both strategies benefit from
more data, but + New Module achieves comparable or better
performance with even fewer demonstrations (on RLBench).
This highlights the strength of our modular design in enabling
data-efficient adaptation while avoiding the cost and potential
catastrophic forgetting associated with updating all model
parameters.

C. Diffusion Components Analysis

To better understand how modularity manifests in FDP, we
analyze the behavior and specialization of individual diffusion
components. Fig. 7 shows rollout trajectories produced by each
component in two representative MetaWorld tasks: assembly
and hammer. Across both tasks, we observe that different
components specialize in distinct functional stages, such as
alignment, approach, and grasp execution. This consistent divi-
sion of responsibility indicates that FDP naturally decomposes
complex behaviors into distinct, interpretable sub-skills across
its components.

To complement the qualitative analysis, we compute the
pairwise cosine similarity between the score outputs, shown
in Fig. 8, visualize how the learned components relate to each
other during inference. While the components are not com-
pletely orthogonal, we observe noticeable variation between
different pairs, indicating that diffusion components capture
distinct, though partially overlapping, aspects of the behavior
distribution.
FDP’s structure contrasts with baseline MoE-based policies.

In MoDE, experts specialize according to diffusion noise levels
rather than task semantics, leading to noise-level specialization
that lacks behavioral interpretability. In SDP, sub-skills emerge

(a) Assembly (b) Hammer

Fig. 7: Rollout trajectories of individual diffusion components in FDP. (a) In assembly,
components 0 and 1 align the robot with the stand, component 2 aligns with the ring, and
component 3 executes the grasp. (b) In hammer, components 0 and 1 align and approach
the pin, component 2 approaches the hammer, and component 3 performs the grasp. Enlarged
version in Fig. 9.

0 1 2 3 4

0

1

2

3

4

1.00

0.50 1.00

0 1 2 3 4

0

1

2

3

4

1.00

0.63 1.00

0.18 0.17 1.00

0 1 2 3 4
Component index

0

1

2

3

4

Co
m

po
ne

nt
 in

de
x

1.00

0.29 1.00

0.33 0.34 1.00

0.21 0.49 0.56 1.00

0 1 2 3 4

0

1

2

3

4

1.00

0.35 1.00

0.25 0.09 1.00

0.51 0.43 0.04 1.00

0.67 0.47 0.05 0.51 1.00

Fig. 8: Cosine similarity between diffusion component
scores. Each heatmap shows average pairwise similarity for
models with 2–5 components, computed over four RLBench
tasks. Lower similarity indicates more distinct component
behaviors.

from sets of experts selected across layers, making it difficult
to assign functionality to any single expert. Experts can be
reused across different combinations or ignored altogether.
Furthermore, SDP routers tend to favor a small subset of
experts, leading to poor load balancing and limited diver-
sity [8]. FDP assigns each behavioral mode to a distinct,
standalone diffusion component. This enables clean semantic
separation between modules, avoiding routing instability or
expert redundancy commonly seen in MoE. This modular
design facilitates straightforward analysis, interpretability, and
reuse, contributing to better training stability and more coher-
ent specialization.

VI. CONCLUSION

We present FDP, a modular policy architecture that lever-
ages factorized diffusion models for multitask imitation learn-
ing and efficient task adaptation. By composing behavior-
specialized diffusion components, our method improves gen-
eralization, interpretability, and modularity over prior ap-
proaches. Extensive experiments on both simulated and real-
world tasks demonstrate that FDP outperforms strong baselines
in multitask performance and adapts effectively to new tasks.
We believe our work highlights the value of compositional
structure and offers a scalable framework for building general-
purpose robotic agents.

VII. LIMITATIONS

While our work demonstrates clear modular specialization,
there remain interesting directions for further analysis. First,
we currently use homogeneous diffusion components of simi-
lar architecture and size. Future work could explore heteroge-
neous module designs, such as mixing U-Net and Transformer-

based diffusion models, or using modules of varying sizes, to
enhance flexibility and expressiveness. Second, we primarily
study specialization through rollout visualization; an alterna-
tive approach is to systematically remove individual diffusion
components and observe the resulting policy behaviors and
failure modes. This could provide deeper insights into the
roles and dependencies of different sub-skills captured by the
factorized policy.

REFERENCES

[1] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong,
Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa
Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
OpenVLA: An Open-Source Vision-Language-Action
Model, June 2024. URL http://arxiv.org/abs/2406.09246.
arXiv:2406.09246 [cs].

[2] Lirui Wang, Jialiang Zhao, Yilun Du, Edward H. Adel-
son, and Russ Tedrake. Poco: Policy composition from
and for heterogeneous robot learning, 2024. URL https:
//arxiv.org/abs/2402.02511.

[3] Gemini Robotics Team, Saminda Abeyruwan, Joshua
Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez
Arenas, Travis Armstrong, Ashwin Balakrishna, Robert
Baruch, Maria Bauza, Michiel Blokzijl, et al. Gemini
robotics: Bringing ai into the physical world. arXiv
preprint arXiv:2503.20020, 2025.

[4] Huy Ha, Pete Florence, and Shuran Song. Scaling
Up and Distilling Down: Language-Guided Robot Skill
Acquisition. In Proceedings of The 7th Conference on
Robot Learning, pages 3766–3777. PMLR, December

http://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2402.02511
https://arxiv.org/abs/2402.02511

2023. URL https://proceedings.mlr.press/v229/ha23a.
html. ISSN: 2640-3498.

[5] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean.
Outrageously Large Neural Networks: The Sparsely-
Gated Mixture-of-Experts Layer, January 2017. URL
http://arxiv.org/abs/1701.06538. arXiv:1701.06538 [cs].

[6] Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srini-
vasan Iyer, Mike Lewis, Gargi Ghosh, Luke Zettlemoyer,
and Armen Aghajanyan. Moma: Efficient early-fusion
pre-training with mixture of modality-aware experts,
2024. URL https://arxiv.org/abs/2407.21770.

[7] Chuanyu Yang, Kai Yuan, Qiuguo Zhu, Wanming Yu,
and Zhibin Li. Multi-expert learning of adaptive legged
locomotion. Science Robotics, 5(49):eabb2174, 2020.

[8] Yixiao Wang, Yifei Zhang, Mingxiao Huo, Ran Tian,
Xiang Zhang, Yichen Xie, Chenfeng Xu, Pengliang Ji,
Wei Zhan, Mingyu Ding, and Masayoshi Tomizuka.
Sparse diffusion policy: A sparse, reusable, and flexible
policy for robot learning, 2024. URL https://arxiv.org/
abs/2407.01531.

[9] Moritz Reuss, Jyothish Pari, Pulkit Agrawal, and Rudolf
Lioutikov. Efficient diffusion transformer policies with
mixture of expert denoisers for multitask learning, 2024.
URL https://arxiv.org/abs/2412.12953.

[10] Runhan Huang, Shaoting Zhu, Yilun Du, and Hang Zhao.
Moe-loco: Mixture of experts for multitask locomotion.
arXiv preprint arXiv:2503.08564, 2025.

[11] Yilun Du, Conor Durkan, Robin Strudel, Joshua B.
Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-
Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce,
reuse, recycle: Compositional generation with energy-
based diffusion models and mcmc, 2024. URL https:
//arxiv.org/abs/2302.11552.

[12] Yilun Du and Leslie Kaelbling. Compositional generative
modeling: A single model is not all you need. arXiv
preprint arXiv:2402.01103, 2024.

[13] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B. Tenenbaum. Compositional visual generation
with composable diffusion models, 2023. URL https:
//arxiv.org/abs/2206.01714.

[14] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Avnish Narayan, Hayden Shively, Adithya Bellathur,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning, 2021. URL https://arxiv.
org/abs/1910.10897.

[15] Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J. Davison. Rlbench: The robot learning bench-
mark & learning environment, 2019. URL https://arxiv.
org/abs/1909.12271.

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models, 2020. URL https://arxiv.
org/abs/2006.11239.

[17] Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In

Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Re-
search, pages 8162–8171. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/nichol21a.html.

[18] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional image
generation with clip latents, 2022. URL https://arxiv.org/
abs/2204.06125.

[19] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. Video
Diffusion Models, June 2022. URL http://arxiv.org/abs/
2204.03458. arXiv:2204.03458 [cs].

[20] Lirui Wang, Kevin Zhao, Chaoqi Liu, and Xinlei Chen.
Learning real-world action-video dynamics with hetero-
geneous masked autoregression, 2025. URL https://arxiv.
org/abs/2502.04296.

[21] Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir
Nachum, Joshua B. Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning Universal Policies via Text-
Guided Video Generation, November 2023. URL http:
//arxiv.org/abs/2302.00111. arXiv:2302.00111 [cs].

[22] Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li,
Abhi Gupta, Tommi Jaakkola, Josh Tenenbaum, Leslie
Kaelbling, Akash Srivastava, and Pulkit Agrawal. Com-
positional foundation models for hierarchical planning,
2023. URL https://arxiv.org/abs/2309.08587.

[23] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chal-
vatzaki. SE(3)-DiffusionFields: Learning smooth cost
functions for joint grasp and motion optimization through
diffusion, June 2023. URL http://arxiv.org/abs/2209.
03855. arXiv:2209.03855 [cs].

[24] Michael Janner, Yilun Du, Joshua Tenenbaum, and
Sergey Levine. Planning with Diffusion for Flexible
Behavior Synthesis. In Proceedings of the 39th Inter-
national Conference on Machine Learning, pages 9902–
9915. PMLR, June 2022. URL https://proceedings.mlr.
press/v162/janner22a.html. ISSN: 2640-3498.

[25] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenen-
baum, Tommi Jaakkola, and Pulkit Agrawal. Is Condi-
tional Generative Modeling all you need for Decision-
Making?, July 2023. URL http://arxiv.org/abs/2211.
15657. arXiv:2211.15657 [cs].

[26] Joao Carvalho, An T. Le, Mark Baierl, Dorothea Koert,
and Jan Peters. Motion Planning Diffusion: Learning
and Planning of Robot Motions with Diffusion Mod-
els, August 2023. URL http://arxiv.org/abs/2308.01557.
arXiv:2308.01557 [cs].

[27] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, 2024.

[28] Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo,

https://proceedings.mlr.press/v229/ha23a.html
https://proceedings.mlr.press/v229/ha23a.html
http://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2407.21770
https://arxiv.org/abs/2407.01531
https://arxiv.org/abs/2407.01531
https://arxiv.org/abs/2412.12953
https://arxiv.org/abs/2302.11552
https://arxiv.org/abs/2302.11552
https://arxiv.org/abs/2206.01714
https://arxiv.org/abs/2206.01714
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1909.12271
https://arxiv.org/abs/1909.12271
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://proceedings.mlr.press/v139/nichol21a.html
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
http://arxiv.org/abs/2204.03458
http://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2502.04296
https://arxiv.org/abs/2502.04296
http://arxiv.org/abs/2302.00111
http://arxiv.org/abs/2302.00111
https://arxiv.org/abs/2309.08587
http://arxiv.org/abs/2209.03855
http://arxiv.org/abs/2209.03855
https://proceedings.mlr.press/v162/janner22a.html
https://proceedings.mlr.press/v162/janner22a.html
http://arxiv.org/abs/2211.15657
http://arxiv.org/abs/2211.15657
http://arxiv.org/abs/2308.01557

You Liang Tan, Lawrence Yunliang Chen, Pannag San-
keti, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea
Finn, and Sergey Levine. Octo: An open-source gener-
alist robot policy, 2024. URL https://arxiv.org/abs/2405.
12213.

[29] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf
Lioutikov. Goal-Conditioned Imitation Learning us-
ing Score-based Diffusion Policies. In Robotics: Sci-
ence and Systems XIX. Robotics: Science and Sys-
tems Foundation, July 2023. ISBN 978-0-9923747-9-
2. doi: 10.15607/RSS.2023.XIX.028. URL http://www.
roboticsproceedings.org/rss19/p028.pdf.

[30] Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu,
Joshua B. Tenenbaum, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Compositional diffusion-based
continuous constraint solvers, 2023. URL https://arxiv.
org/abs/2309.00966.

[31] Max Welling and Yee W Teh. Bayesian learning via
stochastic gradient langevin dynamics. In Proceedings
of the 28th international conference on machine learning
(ICML-11), pages 681–688. Citeseer, 2011.

[32] Pascal Vincent. A connection between score matching
and denoising autoencoders. Neural computation, 23(7):
1661–1674, 2011.

[33] Yilun Du and Igor Mordatch. Implicit generation
and modeling with energy based models. In
H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper files/paper/2019/
file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf.

[34] Jocelin Su, Nan Liu, Yanbo Wang, Joshua B. Tenenbaum,
and Yilun Du. Compositional image decomposition with
diffusion models, 2024. URL https://arxiv.org/abs/2406.
19298.

[35] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion, 2024. URL https://arxiv.org/abs/2303.
04137.

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

[37] E. Rohmer, S. P. N. Singh, and M. Freese. Cop-
peliasim (formerly v-rep): a versatile and scalable robot
simulation framework. In Proc. of The International
Conference on Intelligent Robots and Systems (IROS),
2013. www.coppeliarobotics.com.

APPENDIX

A. Background on Diffusion Policy

Our method, FDP, builds upon the diffusion policy frame-
work [35], leveraging U-Net-based denoising models to rep-
resent the conditional action distribution. Diffusion models
are a class of generative models that synthesize samples by
reversing a predefined noise process. Specifically, we adopt
the Denoising Diffusion Probabilistic Model (DDPM) [16] to
model the policy πθ(at|ot), where ot denotes the observation
and at the action.

Sampling begins with a Gaussian noise aK ∼ N (0, I) and
proceeds through a sequence of denoising steps using a noise
prediction network εθ:

ak−1 = αk
(
ak − γk εθ(ak,o, k) +N (0, σ2

kI)
)
, (8)

where αk, γk, and σk define the noise schedule at timestep
k. This denoising process is akin to Stochastic Langevin
Dynamics [31], where εθ approximates the score function
∇ log p(a|o) of an implicit energy-based model [32].

During training, the model learns to predict the added noise.
A clean action trajectory a0 is perturbed by Gaussian noise
ϵk to form a noisy sample ak = a0+ ϵk. The network is then
supervised to reconstruct the noise via a mean squared error
objective:

LMSE =
∥∥ϵk − εθ(a

k,o, k)
∥∥2
2
. (9)

Minimizing this loss teaches the network to recover
the denoising direction, enabling generation of coherent,
observation-conditioned action sequences through iterative re-
finement.

B. Background on Compositional Sampling

Compositional generation with diffusion models has gained
increasing attention in robotics and generative modeling due to
its ability to produce structured, interpretable outputs. By com-
bining modular distributions, this approach offers enhanced
flexibility and expressiveness for tasks such as robot trajectory
generation and image synthesis [2, 11, 34, 13].

A core theoretical insight is that aggregating diffusion
scores is equivalent to sampling from the product of the
underlying probability distributions. Let p1, p2, . . . , pn be a
set of component distributions. Their product distribution is
given by:

pproduct(x) ∝
n∏
i=1

pi(x), (10)

which assigns high probability to samples that are simultane-
ously likely under all component distributions – i.e., it captures
their intersection.

In the energy-based formulation, each pi(x) ∝
exp(−Ei(x)), and their product yields a new energy-based
model:

pproduct(x) ∝ exp

(
−

n∑
i=1

Ei(x)

)
[33]. (11)

https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2405.12213
http://www.roboticsproceedings.org/rss19/p028.pdf
http://www.roboticsproceedings.org/rss19/p028.pdf
https://arxiv.org/abs/2309.00966
https://arxiv.org/abs/2309.00966
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/378a063b8fdb1db941e34f4bde584c7d-Paper.pdf
https://arxiv.org/abs/2406.19298
https://arxiv.org/abs/2406.19298
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137

Sampling from pproduct can be performed using Langevin dy-
namics. Starting from an initial noisy sample xK ∼ N (0, I),
the iterative update is:

xk−1 = xk − γk∇xEproduct(x
k) + ξk (12)

= xk − γk
∑
i

∇xEi(x
k) + ξk, (13)

where γk is the step size and ξk ∼ N (0, σ2
kI) adds stochas-

ticity to improve exploration. One can bridge EBM and score-
matching diffusion [11].

Compositional sampling enables several practical benefits. It
enhances robustness by enforcing agreement across component
models, which helps reduce uncertainty and improves sample
fidelity. Moreover, it facilitates modular design – indepen-
dently trained components can be integrated at inference
time, promoting scalability across diverse tasks and data
domains [2, 11].

C. Experiment Setup

Simulation. We evaluate FDP on two widely used robotic
manipulation benchmarks: MetaWorld [14] and RLBench [15],
each based on a distinct physics engine. MetaWorld, built on
MuJoCo [36], offers 50 diverse tasks; we select 10 represen-
tative ones focused on object reconfiguration and tool use.
RLBench, running on CoppeliaSim [37], includes over 100
tasks; we select 6 involving contact-rich and articulated-object
interactions. In total, we evaluate across 16 tasks (see Fig. 2).
Expert demonstrations are generated using the scripted policies
provided by each benchmark.

Real-world. Real-world experiments are conducted using a
UR5e robotic arm equipped with a Robotiq soft gripper and
a front-facing RealSense D415 camera (Fig. 3a). All objects
are custom-designed and 3D printed to ensure controlled and
reproducible conditions. We consider four real-world tasks:
cube red, cube blue, hang low, and hang high. The cube-X
tasks require picking up a colored cube from the table and
placing it in a target bowl. The hang-X tasks involve grasping
a mug and precisely hanging it on the corresponding branch of
a mug stand. Task setups and illustrations are shown in Fig. 3.

D. Implementation Details

Overview. All policies take RGB images and joint angles
as input and predict trajectories of absolute joint angles. A
history window of size 2 is used, and each model predicts a
16-step trajectory, from which the first 8 actions are executed.
We adopt the DDPM framework [16] with 100 diffusion steps
during both training and inference. All models are trained
for the same number of gradient steps. No task identity
is provided—there is no task-conditioning or task-specific
routing in any policy.

Baselines. We compare against three existing approaches.
DP [27] is a monolithic U-Net-based policy without modular
structure. SDP [8] introduces a Mixture-of-Experts (MoE)
architecture with expert selection based on observations.
MoDE [9] also uses an MoE design but routes experts based on

the diffusion noise level. For fair comparison, we remove task-
specific routers from SDP and task-goal conditioning from
MoDE, ensuring that all baselines rely solely on observations.
We follow original architecture configurations: four experts per
layer with two selected per forward pass, and proportionally
reduce MoDE model size to match the others. For additional
architectural and training details, we refer readers to the
respective papers.
FDP. Our method, FDP, explicitly factorizes the policy

into four U-Net-based diffusion components. These modules
are trained jointly and composed through score aggregation
using mixture weights generated by a two-layer MLP router
conditioned on observations.

Adaptation. For the + New Module strategy, we adopt the
upcycling approach [6], where new components are initialized
by copying weights from randomly selected existing modules.
In SDP and MoDE, adaptation involves adding two new
upcycled expert blocks per MoE layer, FDP adds one new
U-Net diffusion component.

E. Additional Results on Multitask Learning

We provide detailed results for multitask learning across all
MetaWorld and RLBench tasks evaluated in our experiments.
Table VI shows per-task success rates and overall averages
over 40 evaluation rollouts per task. While most baselines per-
form reasonably well on simpler tasks such as door open and
drawer open, they tend to underperform on tasks that require
more precise coordination or complex spatial reasoning (e.g.,
peg insert, take umbrella out). Our method, FDP, consistently
achieves strong performance across all tasks, benefiting from
its modular structure and better sub-skill decomposition.

In particular, on RLBench tasks, where action distributions
are more multimodal and contact-rich, FDP outperforms others
by a significant margin. This suggests improved capacity for
modeling diverse behaviors and generalizing across complex
task structures.

To further illustrate the advantages of our approach, Fig. 4
presents qualitative comparisons of real-world rollouts. Suc-
cessful trials are shown in the top rows, while failure cases
(bottom rows) highlight common errors made by baseline
methods, such as imprecise end-effector poses and grasp fail-
ures. FDP consistently produces robust and accurate execution
across task variants.

F. Additional Results on Task Adaptation

We report detailed task-wise results for adaptation experi-
ments in both simulation and real-world settings.

Tables VII and VIII present full adaptation results for
both simulation and real-world settings. In simulation, FDP
achieves the highest average success rate across both Meta-
World and RLBench when using the + New Module adaptation
strategy, indicating its superior ability to incorporate new task
knowledge without disrupting prior components.

Notably, FDP achieves strong performance even when only
the router and observation encoder are updated, outperforming
SDP and MoDE by a significant margin. This implies that

MetaWorld
Policy Door Open Drawer Open Assembly Window Close Peg Insert Hammer Avg.

DP 0.900 1.000 1.000 0.950 0.250 0.250 0.725
SDP 0.900 1.000 1.000 1.000 0.200 0.200 0.717

MoDE 1.000 1.000 0.950 1.000 0.200 0.250 0.733
FDP 1.000 1.000 1.000 1.000 0.250 0.250 0.750

RLBench
Policy Toilet Seat Up Open Box Open Drawer Take Umbrella Out Avg.

DP 0.500 0.825 0.800 0.100 0.569
SDP 0.425 0.775 0.025 0.050 0.319

MoDE 0.450 0.500 0.475 0.150 0.394
FDP 0.500 0.900 0.800 0.350 0.638

TABLE VI: Multitask learning evaluation on MetaWorld and RLBench. We report average success rate over 40 samples.

MetaWorld RLBench
Method Policy Door Close Drawer Close Disassemble Window Open Avg. Toilet Seat Down Close Box Avg.

Full
Parameter

DP 1.000 1.000 0.600 1.000 0.900 0.900 0.700 0.800
SDP 0.933 1.000 0.633 1.000 0.892 0.950 0.575 0.763

MoDE 1.000 1.000 0.667 1.000 0.917 0.925 0.700 0.813
FDP 1.000 1.000 0.667 1.000 0.917 0.800 0.850 0.825

Router
SDP 0.733 0.000 0.000 0.067 0.200 0.200 0.025 0.113

MoDE 0.000 0.000 0.000 0.267 0.067 0.100 0.000 0.050
FDP 0.867 0.667 0.000 0.067 0.400 0.150 0.000 0.075

+ Observation
Encoder

SDP 1.000 1.000 0.333 1.000 0.833 0.525 0.150 0.338
MoDE 0.933 1.000 0.400 1.000 0.833 0.675 0.200 0.438
FDP 1.000 0.933 0.500 1.000 0.858 0.650 0.275 0.463

+ New
Module

SDP 1.000 1.000 0.600 1.000 0.900 0.675 0.225 0.450
MoDE 1.000 1.000 0.633 1.000 0.908 0.825 0.375 0.600
FDP 1.000 1.000 0.700 1.000 0.925 0.925 0.775 0.850

TABLE VII: Adaptation evaluation on MetaWorld and RLBench. Pretrained on tasks shown in Table VI. We report average success rate on 60 MetaWorld
samples and 40 RLBench samples.

Method Policy Cube Blue Hang High Avg.

Full
Parameter

DP 0.750 0.850 0.800
SDP 0.700 0.800 0.750

MoDE 0.750 0.800 0.775
FDP 0.850 0.750 0.800

Router
SDP 0.000 0.100 0.050

MoDE 0.100 0.050 0.075
FDP 0.050 0.100 0.075

+ Observation
Encoder

SDP 0.500 0.450 0.475
MoDE 0.500 0.550 0.525
FDP 0.550 0.550 0.550

+ New
Module

SDP 0.650 0.550 0.600
MoDE 0.700 0.650 0.675
FDP 0.850 0.850 0.850

TABLE VIII: Adaptation evaluation in real-world. Pretrained on tasks
shown in Table II. We report average success rate on 20 samples.

the component distributions in FDP are more reusable and
interpretable than those in other modular methods, which often
rely on entangled expert combinations.

In real-world experiments, we observe similar trends: FDP
consistently performs better or matches the best baseline
across various adaptation settings. These results highlight
FDP ’s practical advantages for continual learning and real-
world deployment, where quick adaptation to novel tasks with
limited supervision is critical.

G. Diffusion Components Analysis

We provide enlarged visualizations of rollout trajectories
for each diffusion component in FDP to complement the
compressed figure shown in the main paper (Fig. 7). As
depicted in Fig. 9, each component learns to specialize in
a distinct sub-skill, validating the modular structure of our
approach.

In the assembly task, components 0 and 1 guide the robot
to align with the assembly stand, component 2 adjusts the
end-effector position to align with the ring, and component
3 performs the grasping motion. In the hammer task, com-
ponents 0 and 1 coordinate to align and approach the pin,
component 2 transitions the arm toward the hammer, and
component 3 executes the grasp. Notably, each component
displays temporally consistent behavior, and their combined
outputs lead to successful task execution. This clear division of
responsibility reflects meaningful behavioral decomposition,
with each component contributing a targeted motion primitive.

This visualization confirms that the learned components
are functionally interpretable and behaviorally distinct. Unlike
MoE-based baselines, where experts are reused across skills
in entangled ways, our method enables disentangled, reusable
skill modules.

(a) Assembly (b) Hammer

Fig. 9: Rollout trajectories of individual diffusion components in FDP. (a) In assembly, components 0 and 1 align the robot with the stand, component
2 aligns with the ring, and component 3 executes the grasp. (b) In hammer, components 0 and 1 align and approach the pin, component 2 approaches the
hammer, and component 3 performs the grasp. Checkout videos on factorized-diffusion-policy.github.io.

H. Training Convergence
We compare the training efficiency of FDP against MoDE

and SDP by analyzing convergence curves on validation tra-
jectories. Specifically, we track the mean squared error (MSE)
loss used during diffusion training, measured over validation
episodes across training epochs. Results are shown in Fig. 10
for both MetaWorld and RLBench tasks.
FDP consistently achieves lower validation MSE in fewer

epochs, indicating faster convergence. MoDE converges more
slowly, while SDP shows higher variance and slower reduction
in loss, likely due to instability in expert selection and poor
load balancing during training. These results support our
claim that continuous score composition in FDP improves
optimization stability compared to discrete Mixture-of-Expert
(MoE) methods.

Fig. 10: Training convergence curves. Mean squared error (MSE) loss
over training epochs for RLBench and MetaWorld tasks. FDP consistently
converges faster and more stably than MoDE and SDP, indicating improved
training efficiency and optimization stability.

I. Rollout Visualizations
We present additional qualitative results to illustrate the

behavior of our policy FDP across diverse manipulation tasks

in both simulation and real-world. Fig. 11 shows rollout
sequences captured from different stages of task execution.
These filmstrips visualize the robot’s actions from the ini-
tial observation to successful task completion. Tasks involve
reaching, aligning, grasping, and manipulating articulated or
occluded objects. The qualitative rollouts reinforce the quan-
titative findings and further validate that compositional policy
factorization leads to coherent, interpretable, and reusable
behavior modules.

https://factorized-diffusion-policy.github.io/

Fig. 11: Example rollout sequences for various tasks. Each filmstrip visualizes the trajectory execution of a policy on a specific manipulation task, highlighting
the key interaction stages from initial observation to task completion. Checkout videos on factorized-diffusion-policy.github.io.

https://factorized-diffusion-policy.github.io/

	Introduction
	Related Works
	FDP: Factorized Diffusion Policy
	Probabilistic Policy Modeling
	Compositional Sampling and Routing
	Multitask Learning and Adaptation

	Experiments
	Experiments Setup
	Implementations
	Multitask Learning
	Task Transfer and Adaptation

	Analysis
	Scaling of Number of Diffusion Components
	Scaling of Number of Demonstrations
	Diffusion Components Analysis

	Conclusion
	Limitations
	Appendix
	Background on Diffusion Policy
	Background on Compositional Sampling
	Experiment Setup
	Implementation Details
	Additional Results on Multitask Learning
	Additional Results on Task Adaptation
	Diffusion Components Analysis
	Training Convergence
	Rollout Visualizations

