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Room 3 has a refrigerator, suggesting it is probably a 
kitchen or break area where bins are commonly found. 
Thus, exploring Room 3 is the most logical next step.

I will assess objects in unexplored rooms to 
estimate the likelihood of a garbage bin. ... The agent is in Room 0 now, which is almost fully explored 

with no refrigerator found. To continue search, next room 
must be selected from the unexplored rooms. Room 1 contains a 
viewpoint with frontiers, indicating unexplored areas remain.

Fig. 1: STRIVE can conduct zero-shot object navigation in diverse and complex real-world environments by leveraging our
novel multi-layer representation and 2-stage efficient navigation policy.

Abstract—Vision-Language Models (VLMs) have been increas-
ingly integrated into object navigation tasks for their rich prior
knowledge and strong reasoning abilities. However, applying
VLMs to navigation poses two key challenges: effectively repre-
senting complex environment information and determining when
and how to query VLMs. Insufficient environment understanding
and over-reliance on VLMs (e.g. querying at every step) can
lead to unnecessary backtracking and reduced navigation effi-
ciency, especially in continuous environments. To address these
challenges, we propose a novel framework that constructs a
multi-layer representation of the environment during navigation.
This representation consists of viewpoint, object nodes, and room
nodes. Viewpoints and object nodes facilitate intra-room explo-
ration and accurate target localization, while room nodes support
efficient inter-room planning. Building on this representation, we
propose a novel two-stage navigation policy, integrating high-level
planning guided by VLM reasoning with low-level VLM-assisted
exploration to efficiently locate a goal object. We evaluated our
approach on three simulated benchmarks (HM3D, RoboTHOR,
and MP3D), and achieved state-of-the-art performance on both
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the success rate (↑ 7.1%) and navigation efficiency (↑ 12.5%).
We further validate our method on a real robot platform,
demonstrating strong robustness across 15 object navigation tasks
in 10 different indoor environments. Project page is available at
https://zwandering.github.io/STRIVE.github.io/.

I. INTRODUCTION

Object navigation is a fundamental task in robotics, where
an agent must locate an instance of a given object category in
unknown environments. This task is particularly challenging,
as it requires the agent to understand complex visual infor-
mation, reason about spatial relationships, and make decisions
based on both current and past observations.

Advances in Vision-Language Models (VLMs) [21, 31, 27]
have demonstrated strong capabilities in contextual visual
understanding and common-sense reasoning. Building on this,
recent works [37, 15, 2, 30, 26, 16] have integrated VLMs into
object navigation tasks, utilizing their rich prior knowledge,
visual understanding, and commonsense reasoning abilities to
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guide navigation. However, existing approaches often face two
significant challenges: First, the input to VLMs typically lacks
a structured representation of the environment and is often
restricted to local observations. Without a coherent global
view that integrates both current and previous observations,
VLMs struggle to reason effectively about the environment
and fail to make reasonable navigation decisions. Second,
existing methods [2, 30, 16] typically rely on VLMs to select
among all frontier viewpoints at each step, without utilizing
navigation progress or environment layouts to effectively guide
VLMs’ reasoning process. Besides, due to VLMs’ limited
understanding of 3D spatial information [43, 5, 20], they
cannot jointly reason about the spatial relationships and the
navigation history when evaluating each viewpoint. As a result,
their evaluation of viewpoints is largely based on viewpoints’
local semantic information, which often leads to redundant
navigation behaviors such as backtracking or repeated explo-
ration.

To address these challenges, we propose STRIVE
(STructured Representation Integrating VLM Reasoning for
Efficient Object Navigation), a novel framework that incre-
mentally learns a structured representation of the environment
and utilizes VLM’s reasoning abilities to guide the naviga-
tion. This representation consists of 3 layers: object nodes,
viewpoint nodes, and room nodes. Object nodes represent all
observed objects, provide comprehensive semantic informa-
tion about the environment and assist in target localization;
Viewpoint nodes discretize the environment into a set of
key locations, enabling efficient intra-room exploration; Room
nodes further segment the environment into distinct rooms and
facilitate room-level reasoning by the VLM. This multi-layer
representation enables a more comprehensive understanding
of the environment, allowing VLM to better utilize their
reasoning abilities for more effective decision-making. Fur-
thermore, we design an efficient two-stage navigation policy
based on this representation, combining high-level planning
guided by the VLM’s reasoning and VLM-assisted low-level
exploration. Specifically, for the high-level planning, instead
of making step-by-step decisions among all viewpoint nodes,
the VLM selects the next room to explore based on the spatial
layout and semantic information of each room. For low-level
exploration within rooms, we employ a traditional frontier-
based algorithm for efficient exploration, while leveraging
the VLM to decide whether continued exploration of the
current room is worthwhile. Making high-level planning on
rooms effectively mitigates the issue of VLMs’ insufficient 3D
spatial understanding and prevents redundant actions, thereby
enhancing navigation efficiency.

We evaluate our method on three widely-used simulated
benchmarks: HM3D [22], RoboTHOR [8], and MP3D [3].
STRIVE achieves state-of-the-art (SOTA) results, significantly
outperforming 13 existing methods in both Success Rate
(SR) and navigation efficiency, measured by Success weighted
by Path Length (SPL). This highlights the effectiveness of
our proposed multi-layer representation and the VLM-guided
reasoning policy in improving object navigation. Specifically,

STRIVE achieves 79.6% SR and 38.7% SPL on HM3D,
68.1% SR and 36.3% SPL on RoboTHOR, and 52.3% SR
and 23.1% SPL on MP3D. Besides, we also conduct 15 real-
world experiments across 10 different indoor environments on
a Mecanum wheel platform [40], demonstrating the effective-
ness and robustness of our method in real-world scenarios.

II. RELATED WORKS

Object Navigation. Existing object navigation methods are
typically categorized into end-to-end learning approaches and
modular approaches. End-to-end methods [7, 29, 36, 24, 25,
18, 35] use reinforcement learning to directly map obser-
vations to actions, but often suffer from low sample effi-
ciency and poor generalization. In contrast, modular meth-
ods [4, 23, 41, 39, 45, 4, 2, 37] decompose navigation into
steps such as mapping, planning, and action execution, and
often build semantic maps in bird’s-eye view or 3D space
to facilitate more interpretable and scalable navigation behav-
ior. With the emergence of foundation models [21], object
navigation has advanced towards zero-shot, open-vocabulary
setting [39, 45, 38, 37, 2]. VLFM [38] aligns object goals with
CLIP embeddings, while CogNav [2] further leverages LLMs
to enable cognitive-like decision-making. We also leverage
VLM’s reasoning abilities to improve zero-shot object nav-
igation. but we employ a novel representation and a two-stage
policy, enabling more efficient and effective VLM guidance.
VLM-guided Navigation. With internet-scale training data,
Vision-Language Models (VLMs) [14, 21, 31, 27] have shown
strong commen-sense reasoning abilities and have been widely
applied in Object Navigation tasks to guide the decision-
making process. For example, InstructNav [15] leverages
multi-sourced value maps to model key navigation elements.
SG-Nav [37] constructs 3D scene graphs and prompts LLMs
with structural relationships, while CogNav [2] utilizes LLMs
to reason about the cognitive process of object navigation.
However, due to VLMs’ limited 3D spatial understanding
ability [43, 5, 20], over-reliance on VLMs for navigation can
lead to inefficient behavior, such as frequent backtracking.
To address this, we propose a two-stage navigation policy
that combines VLM-guided high-level planning with VLM-
assisted frontier-based low-level exploration strategies, lever-
aging the reasoning strength of VLMs while ensuring efficient
and robust navigation behavior.
Scene Representation for Indoor Navigation. Scene rep-
resentation is crucial for transforming raw observations into
structured information for decision-making in navigation tasks.
Frontier-based methods [23, 6, 9, 10] record frontiers on
a grid map and integrate semantic information to guide
exploration. In contrast, graph-based methods represent the
environment as structured scene graphs to support navigation.
Prior works [37, 16] use scene graphs to summarize semantic
information and let VLMs to select among frontier locations.
Others [1, 30, 2] explicitly construct viewpoints in the scene
graph, enabling VLMs to reason over the graph and choose
among viewpoints to guide navigation. Unlike traditional scene
graphs [11, 30, 2], where viewpoints are typically derived
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[…, {“index”: 12,
“pos”: [-7.8,1.1,-0.8],
“label”: “sofa”, 
“confidence”: 0.7}, …],
“Viewpoints”:
[…, {“index”: 5,
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“objects”: [12,13],
“frontier”: true}, …], 
“Rooms”: 
[…,{“room_idx”: 6, 
“viewpoints”: [5],
“distance”: 4.9m, 
“state”: 0}, …]

Json

Room 6 contains the objects ‘doorway’ 
and ‘sofa’. Thus, exploring room 6 seems 
most likely to find the <television>.

Fig. 2: Overview of STRIVE. We construct a multi-layer representation R (Sec. III-A) on-the-fly, consisting of object,
viewpoint, and room nodes, which serves as a structured input for VLM. Based on R, we introduce a two-stage navigation
policy, where the VLM reasons and plans at room-level (Sec. III-B2), while the agent explores in room at the viewpoint-level
using a VLM-assisted frontier-based navigation strategy (Sec. III-B1) and VLM-based target verification (Sec. III-B3).

from Voronoi partitions, we discretize the environment into
semantically meaningful regions to select viewpoint nodes. As
the middle layer, these viewpoints bridge the spatial structure
(room nodes) and semantic content (object nodes), forming a
structured representation facilitating VLM reasoning.

III. METHOD

Task Definition: In Object Navigation, the agent is
required to find an instance of a given object category
(e.g. Find the bed.) in an unknown environment. At
each time step t, the agent receives a posed RGB-D
observation Ot = {It, Dt, Pt = ⟨pt,Rt⟩}, where It is the
RGB image, Dt is the depth map, and Pt is the camera
pose. The navigation policy then predicts an action at ∈
{move_forward, turn_left, turn_right, stop}.
The task is considered successful if the agent stops within ds
meters of the target object in less than T steps.

Overview: Fig. 2 provides an overview of STRIVE, a
framework that constructs a multi-layer environment repre-
sentation and performs object navigation through a novel two-
stage navigation policy. STRIVE enables the VLM to reason
at the room-level while guiding the agent to explore within
rooms at the viewpoint-level. The representation construction
process is detailed in Sec. III-A and the two-stage navigation
policy is presented in Sec. III-B.

A. Multi-layer Environment Representation

We propose a framework that constructs a three-layer
graph representation R to model the environment, where
each layer corresponds to a specific type of node: object
nodes V obj = {vobji }, viewpoint nodes V vp = {vvpi }, and
room nodes V room = {vroomi }. Edges encode spatial and
semantic relationships across nodes. We elaborate on the graph
construction in following sections.
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Fig. 3: Visualization of the viewpoint selection algorithm.
Green and yellow nodes are the selected viewpoints.

1) Viewpoint Nodes
Inspired by [34], we construct a skeleton graph as the

viewpoint layer to discretize the environment. Importantly, the
graph is incrementally built as the agent navigates—each time
the agent reaches a new viewpoint, it updates the graph. We
define a coverage range ζcover as the radius within which
semantic information is associated with the center viewpoint.
Each viewpoint node thus controls a local region determined
by ζcover. Edges between viewpoint nodes indicate direct
traversability. The maximum sensor range ζmax denotes the
effective measurable distance of the depth camera.

Node: To select the future viewpoint nodes, we begin by
taking the input of agent’s position p, coverage range ζcover,
and accumulated point cloud (project from posed D). First,
k rays are cast from p in k uniformly sampled directions to



Find the <television>.
You are now at node with position [-0.8, -2.5, -0.8] in the Room 5.

The robot history trajectory is: �� [0, 0, -0.8] → �� [-0.2, 5.2, -0.8] → … → �� [-0.8, -2.5, -0.8].

“objects”: 
[…, {“index”: 12,
“pos”: [-7.8,1.1,-0.8],
“label”: “sofa”, 
“confidence”: 0.7}, …]

“Rooms”: 
[…,{“room_idx”: 6, 
“viewpoints”: [5],
“distance”: 4.9m, 
“state”: 0}, …]

“Viewpoints”:
[…, {“index”: 5,
“pos”: [-4.9,0.1,-0.8], 
“objects”: [12,13],
“frontier”: true}, …] 

Please choose a room to explore from the partially explored rooms: [4, 6]

Task-relvent
Context

VLM
Reasoning

          Candidate Rooms:
    • Room 4 : 'bed', 'table', 'night stand'
    • Room 6 : 'door way', 'sofa'

          Analysis:
    • Room 4 objects suggest a bedroom.
    • Room 6 objects suggest a living room.

Inference: Tvs are typically 
found in living rooms.

Decision: Explore Room 6.

Instruction: Find the <television>

Current Status: Room 5 fully explore, 
need to choose another room.

Decision Strategy: Balance object 
likelihood and travel distance.
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Fig. 4: Visualization of the structured prompt and the VLM’s reasoning process of selecting the next best room.

intersect with point cloud and form a polygon P within ζcover,
representing the controlled region of current viewpoint node.
Next, we remove the polygon from the point cloud and divide
the remaining point cloud into separate regions, which fall into
two categories: regions with or without frontiers.

Regions with frontiers: Inspired by [33], we use frontiers
to guide viewpoint selection. The frontiers are identified and
clustered into frontier edge segments and construct a graph
Gfrontier by connecting every pair of segments that are
mutually visible. Then the Maximum Clique is iteratively
removed from Gfrontier. For each removed clique, its center
is added as a new viewpoint node vvpi (green node in Fig. 3)
to our representation R.

Regions without frontiers: For these regions, the center of
the region is directly added as a new viewpoint node vvpi
(yellow nodes in Fig. 3) to our representation R.

Edges between V vp: We evaluate straight-line traversability
between each pair of viewpoint nodes. An edge is added if the
direct line between two nodes is free of obstacles.

2) Object Nodes
We leverage open-vocabulary detection and segmentation

methods [44, 12] to obtain segmented 3D object instances.
Specifically, given the observations at time step t, we recon-
struct the 3D point cloud of each detected object using the
predicted masks, depth map Dt and camera pose Pt. For each
object, we instantiate an object node at its center, recording
attributes such as 3D position, point cloud, predicted label,
confidence score and 3D bounding box. Newly instantiated
nodes are merged with previously observed nodes if they
correspond to the same physical object.

Edges between V vp and V obj: An edge is added between
vvpi and vobjj if vobjj is within the cover range ζcover of vvpi and
is visible from vvpi . An object can be associated with multiple
viewpoints. If an object isn’t connected to any viewpoint, we
connect it to the closest visible viewpoint.

3) Room Nodes
Following [28, 11], we identify all walls in the environment

and iteratively dilate them to segment the environment into
connected components. Then each connected component is
added as a room node vroomi to our representation R. Finally,
edges are added between each room node and the viewpoint
nodes located within the corresponding room. Further details
are provided in the App. H.

B. Object Navigation Policy

In this section, we present our efficient two-stage navigation
policy, where the VLM performs high-level reasoning and
planning at the room level, while the agent conducts fine-
grained exploration within each room at the viewpoint level,
guided by a VLM-assisted frontier-based strategy and VLM-
based target verification.

1) Explore in Room with Early Stop
For efficient low-level exploration within rooms, we intro-

duce VLM-assisted early stop, combining VLM with tradi-
tional frontier-based algorithm. We first classify frontiers into
two types: True Frontiers, which lie along room boundaries
indicating incomplete exploration, and Inner Frontiers, result-
ing from objects’ occlusions. The agent iteratively navigates
to the nearest viewpoint with True Frontiers and explores until
all True Frontiers are cleared. If Inner Frontiers still remain
in the current room, we query the VLM to decide whether
further exploration inside this room is necessary.

2) Next Best Room
In situations where exploration of the current room is

completed without finding the target object, we must determine
the next room to explore. To guide this decision, we leverage
VLM’s commonsense reasoning abilities by providing task-
relevant context and general exploration heuristics.

The task-relevant context is consolidated into a combined
Prompt as described in Fig. 4, which contains 1) target object
instruction, 2) agent’s current state, 3) agent’s navigation



Method Open-Set Zero-Shot HM3D RoboTHOR MP3D

SR(%) ↑ SPL(%) ↑ SR(%) ↑ SPL(%) ↑ SR(%) ↑ SPL(%) ↑

SemEXP [4] ✗ ✗ - - - - 36.0 14.4
PONI [23] ✗ ✗ - - - - 31.8 12.1
ZSON [17] ✓ ✗ 25.5 12.6 - - 15.3 4.8
L3MVN [39] ✗ ✓ 54.2 25.5 41.2 22.5 34.9 14.5
ESC [45] ✓ ✓ 39.2 22.3 38.1 22.2 28.7 11.2
VoroNav [30] ✓ ✓ 42.0 26.0 - - - -
VLFM [38] ✓ ✓ 52.5 30.4 - - 36.4 17.5
SG-Nav [37] ✓ ✓ 54.0 24.9 47.5 24.0 40.2 16.0
OpenFMNav [13] ✓ ✓ 54.9 22.4 44.1 23.3 37.2 15.7
InstructNav [15] ✓ ✓ 58.0 20.9 - - - -
TriHelper [42] ✓ ✓ 62.0 25.3 - - - -
OSG [16] ✓ ✓ 69.3 28.3 - - - -
CogNav [2] ✓ ✓ 72.5 26.2 54.6 24.3 46.6 16.1

STRIVE (ours) ✓ ✓ 79.6 38.7 68.1 36.3 52.3 23.1

TABLE I: Comparison with SOTA methods with different settings on HM3D, RoboTHOR, and MP3D datasets. We report the
Success Rate (SR) and Success weighted by Path Length (SPL) metrics.

history, and 4) the environment representation R formatted
as a JSON file. A detailed description of the JSON format is
provided in the App. C.

Besides the task-relevant context, we also provide the
VLM with general exploration heuristics. Specifically, we
explicitly instruct the VLM to evaluate two factors: 1) The
semantic similarity between the objects in each room and
the target object. 2) The distance from the agent’s current
position to each room, aiming to optimize the exploration path
by minimizing unnecessary backtracking. Using a Chain-of-
Thought reasoning strategy, the VLM selects the most suitable
unexplored room for further exploration. Finally, the viewpoint
closest to the current position in the selected room is chosen
as the next action viewpoint. We detail the prompts used in
the App. B.

Notably, in later navigation stage, continuing forward is
more effective than backtracking, as remaining steps may not
allow long detours. In light of this, we introduce a penal-
ized distance that weights the geodesic distance by factors
reflecting the steps already taken and the number of explored
viewpoints along the path to each candidate room.

3) VLM-Based Target Verification
Accurate detection of the target object is crucial in object

navigation. However, relying solely on detectin model [44]
often results in false positives. To address this, we propose
incorporating the VLM to verify detected target objects, lever-
aging its ability to reason about the contextual information of
the surrounding environment.

Context-Aware Verification: When the agent detects a
potential target object, we prompt the VLM with the detected
object and its surrounding visual context for verification.
The VLM leverages both the object’s appearance and its
surrounding semantic information to determine whether it
matches the target category, e.g. recognizing a painting of plant
as a ‘decoration’ rather than ‘plant’.

Viewpoint-Optimized Re-Verification: The agent may ini-
tially observe and detect the target object from a suboptimal
viewpoint (e.g., under occlusion or from a long distance),
resulting in inaccurate detection. To address this, we perform
a second observation from a better viewpoint. Unlike the
baseline method [37, 2], which further observes the target
object from multiple viewpoints, we compute the optimal
viewpoint along the path from the current position to the
target object and only perform one VLM re-verification at that
viewpoint. This strategy improves detection accuracy without
sacrificing navigation efficiency.

IV. EXPERIMENT

A. Experiment Setup

We evaluate our method by comparing it with state-of-the-
art methods on the Object Navigation task in Habitat [19]
simulator. We also conduct real-world experiments across
diverse environments.

Dataset: We perform simulated experiments on 3 datasets:
1) HM3D [22], a large-scale 3D indoor scene dataset com-
prising 20 high-fidelity scenes with 6 target object cate-
gories. 2) MP3D [3], another 3D scene dataset featuring
11 high-fidelity scenes with 21 target object categories. 3)
RoboTHOR [8], a 3D indoor scene dataset containing 15
scenes with 12 target object categories.

Evaluation Metrics: Following [32], we use 4 metrics to
evaluate the performance: 1) Success Rate (SR): the percent-
age of episodes in which the agent reaches the target object
within a success distance. 2) Success weighted by Path Length
(SPL): the success rate weighted by the ratio of the shortest
path length to the actual path length. 3) Distance to Goal
(DTG): the final distance to the target object at the end of
the episode. 4) SoftSPL: replacing the binary success term in
SPL with a “soft” value that indicates the progress made by
the agent towards the goal.
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Fig. 5: Qualitative visualization of STRIVE. The first and second steps show the VLM’s reasoning process, where it selects
Room 6 and 9 by jointly considering room-layout (‘doorway’), semantic cues (‘nightstand’) and travel cost (penalized distance).
The final step shows VLM-based verification, using contextual cues (e.g., mattress, pillows) to confirm the target object.

Implementation Details: Each episode allows a maximum
of 500 steps and a success distance of 1.0m. The agent
observes the environment using a 640 × 480 RGB-D image,
with depth values from 0.5m to 5.0m and a horizontal field
of view (HFOV) of 79◦. The camera is mounted 0.88m above
the ground. The agent moves forward by 0.25m per step and
rotates by 30◦. For VLM, we use Gemini [27] (gemini-2.0-
flash), and for object detection and segmentation, we use MM-
GroundingDINO [44] and SAM [12]. All experiments are
conducted on RTX4090 GPUs.

For real-world experiments, we deploy STRIVE on the
Mecanum wheel platform [40], which is equipped with a
Ricoh Theta Z1 360-degree camera for RGB image capturing
and a Livox Mid-360 LiDAR for 3D point cloud acquisition.
To maintain compatibility with the input format in simulation,
the collected point clouds are converted into depth maps when
necessary.

B. Quantitative Results in Simulator

We compare STRIVE with state-of-the-art object navigation
methods in different settings as shown in Tab. I. STRIVE
significantly outperforms all baselines across all benchmarks,
with an increase of +7.1% SR, +12.5% SPL in HM3D,
+13.5% SR, +12.0% SPL in RoboTHOR, +5.7% SR, +7.0%
SPL in MP3D compared to CogNav [2]. The improvement in
SPL is more significant than that in SR, indicating that our
representation and navigation policy effectively improve navi-
gation efficiency. Furthermore, increased navigation efficiency
enables the agent to explore a larger area within a limited
number of steps. The improvement in SR results from the
combined effects of more efficient navigation, better utilization
of the VLM’s reasoning capabilities, and more accurate VLM-
based verification.

C. Qualitative Results in Simulator

We visualize the navigation process of STRIVE in Fig. 5.
The results demonstrate that our structured representation
enables the VLM to reason effectively about both spatial
layout (e.g., a room with a ”doorway” can lead to other rooms)
and semantic cues (e.g., nightstands suggesting bedrooms),
leading to improved room selection. Furthermore, the VLM
balances the likelihood of finding the target object against
travel distance cost when planning room-to-room exploration.
It also leverages contextual information to re-verify detected
objects and effectively reduces false positives.

D. Real-World Experiments

We conduct 15 real-world experiments across 10 different
environments, including offices, meeting rooms, classrooms,
lounges, dining areas, corridors, and kitchens. Part of the ex-
periment environments and results are shown in Fig. 1. Com-
pared to simulation, real-world deployment presents additional
challenges. Lidar-captured point clouds are much sparser than
depth maps, and real environments are often more cluttered,
introducing noise that affects both exploration and object
detection. Despite these challenges, our agent demonstrates
robust performance.

We elaborate on 2 difficult environments in Fig. 1. In the left
scenario, the agent is initialized inside a small enclosed room
connected to a larger lounge area. Despite the presence of inner
frontiers—regions occluded by furniture—the agent correctly
decides to abort exhaustive exploration of this room. Instead,
it exits the room early and shifts its attention to unexplored
rooms nearby, where it ultimately locates the target object. In
the right scenario, the agent is initialized in a dining area and
instructed to find a ‘Garbage bin’. STRIVE successfully uses
the VLM to reason on semantic associations (‘refrigerator’
and ‘bins’) and find the target object efficiently. For other



V vp V obj V room SR ↑ SPL ↑ S-SPL ↑ DTG(m) ↓
✓ ✗ ✗ 71.3 33.2 35.2 1.86
✓ ✓ ✗ 72.4 34.0 36.1 1.95
✓ ✗ ✓ 72.9 33.8 35.4 1.86
✓ ✓ ✓ 75.0 34.9 36.5 1.80

TABLE II: Ablation study of representation on HM3D.
We adopt a viewpoint-level navigation policy for experiment
consistency.

environments, we also present final frames where the agent
successfully reaches the target object. From these results, we
can conclude that STRIVE can handle diverse and complex
real-world environments.

E. Ablation Study

Multi-layer Representation: We conduct an ablation study
to evaluate the contributions of object nodes and room nodes
in our multi-layer scene representation. Since room-level nav-
igation depends on room nodes, it cannot be used when
they are removed. To ensure consistency, we adopt a basic
navigation policy that allows the VLM to guide navigation
at the viewpoint level instead of the room level. As shown
in Tab. II, both object nodes and room nodes contribute sig-
nificantly to performance improvement. Incorporating object
nodes improves the agent’s ability to localize target objects,
while adding room nodes enhances its understanding of the
environment layout. Using both layers together leads to a
substantial improvement over using either individually.

Navigation Policy: We conduct ablation studies to evaluate
the effectiveness of our navigation policy, VLM-assisted early
stopping, penalized distance, and VLM-based verification, as
summarized in Tab. III. The last two rows compare our room-
level planning policy against a basic viewpoint-level approach.
Results show that room-level planning enables the agent to
better leverage the VLM’s reasoning capabilities, significantly
boosting performance. We also report the average VLM token
usage per episode. By querying the VLM only for room-level
planning, our method significantly reduces token consumption
compared to viewpoint-level planning. Finally, the VLM-
assisted early stopping, penalized distance, and verification
modules each contribute to further performance gains.

V. CONCLUSION

In this paper, we introduce STRIVE, a novel framework
that incrementally constructs a structured scene representa-
tion and leverages VLM’s reasoning capabilities to achieve
efficient object navigation. STRIVE incrementally builds a
multi-layer representation of the environment, consisting of
room, viewpoint and object nodes. Based on this representa-
tion, we design an efficient two-stage VLM-guided naviga-
tion policy, which leverages VLM reasoning for room-level
planning while using VLM together with traditional frontier-
based methods for efficient exploration within rooms. To

SR ↑ SPL ↑ S-SPL ↑ DTG(m) ↓ Tokens ↓
w/o Early Stop 74.8 34.8 36.4 1.62 -

w/o Penalized Dist 73.7 36.1 36.9 1.47 -
w/o VLM-Verify 72.1 32.7 34.1 1.83 -

Viewpoint Policy 75.0 34.9 36.5 1.80 22935
STRIVE 79.6 38.7 38.9 1.29 8068

TABLE III: Ablation study of navigation policy components
on HM3D. Viewpoint Policy stands for VLM planning on
viewpoint-level.

further improve robustness, we incorporate VLM-based target
verification, utilizing VLMs’ contextual understanding to im-
prove detection accuracy. Experiments across three simulated
benchmarks demonstrate that STRIVE achieves state-of-the-
art performance, significantly improving both success rate and
navigation efficiency. Furthermore, our real-world experiments
demonstrate the robustness and practicality of STRIVE in
navigating complex and diverse real-world environments.

VI. LIMITATIONS
Despite the promising results in object navigation, STRIVE

still has several limitations:
Limiting Assumption: In simulation, the depth input from

the depth camera is dense and accurate. However, in real-
world settings, although we have accumulated LiDAR inputs
along the trajectory, the resulting point clouds remain signif-
icantly sparser, which affects both object segmentation and
traversability estimation. As a result, the agent must pause
at each viewpoint for 2 seconds to accumulate denser point
clouds. Incorporating lightweight point cloud completion mod-
els to improve perception quality without sacrificing efficiency
might address this issue.

Failure Mode: In our experiments, we observed that even
with VLM-based target verification, it is still challenging to
avoid false positives in certain scenarios. For instance, when
searching for a bed, if the agent encounters a sofa bed,
the VLM may mistakenly identify it as a bed due to the
functional and visual similarities. Future work could explore
using more constrained prompts and stronger VLMs for target
verification. Additionally, at the start of the task, employing
image generation models to create a target image could help
mitigate the influence of VLM’s common-sense knowledge on
target verification since generative models typically produce
very typical target images.

Other Limitations:
(1) STRIVE currently does not support real-time updates

of the environment representation, which becomes especially
evident on real-world experiments with limited onboard com-
putation. The bottleneck lies primarily in the detection module:
current 2D detection model, MM-Grounding-DINO [44], is
both slow and error-prone. To improve detection reliability,
we incorporate VLM-based target verification, which further
increases computational overhead. A more efficient and ac-
curate detection framework would significantly improve the
system’s speed and responsiveness.



(2) In simulated environments, we found that many scenes
have big holes in the mesh, which can lead to incorrect
traversability estimation. This is primarily due to the data
collection. Besides, we found that the dataset didn’t label all
instances of the target categories in the scene, which cause
some success episodes to be counted as failures, especially in
MP3D [3]. More details is provides in the Sec. G. We believe
that the dataset should be improved to provide more accurate
and complete annotations.
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STRIVE: Structured Representation Integrating
VLM Reasoning for Efficient Object Navigation

(Appendix)
APPENDIX A
OVERVIEW

In this supplementary material, more details about the pro-
posed STRIVE and more experimental results are provided,
including:

• General Exploration Heuristic: The general exploration
heuristic prompt we provide to the VLM to help it make
better decisions (App. B).

• Detailed Structure of Task-relevant Context: The de-
tailed structure of the Task-relevant Context generated
from our proposed representation R to prompt the VLM
with whole environment information for better reasoning
(App. C).

• Detailed Experiment Results: We provide more de-
tailed experimental results, including the performance of
STRIVE on different categories of objects on HM3D [22]
and more qualitative results (App. D).

• Examples of VLM Reasoning: We provide more exam-
ples of VLM reasoning results, including the reasoning
process and the final decision (App. E).

• Details of VLM-based Verification: We provide
a detailed explaination of the VLM-based verifica-
tion process, including Context-Aware Verification and
Viewpoint-Optimized Re-Verification, and we also pro-
vide more examples of VLM-based verification results,
including the reasoning process and the final decision
(App. F).

• Dataset Error: We briefly show some examples of
mislabelled data in the dataset (App. G).

• Detailed Room Segmentation: We provide more details
about the room segmentation process (App. H).

APPENDIX B
EXPLORATION HEURISTICS

In order to make the VLM better guide the navigation to
complete the current task as soon as possible, we provide a
general prompt to give it an overall concept of the object
navigation task. We also explain the meaning of each part
in the provided JSON file and explicitly require the VLM to
consider the probability of the target object appearing in each
candidate room and the travel cost required to explore each
room when making decisions.

Listing 1: General Object Navigation Heuristic Prompt
PROMPT = """

You are a wheeled mobile robot operating
in an indoor environment. Your goal is to
efficiently find a target object based on a
human-provided instruction in a new house.
The current room you are in has been fully
explored. To achieve the goal, you must

select the next room to explore from the
partially explored rooms listed in a JSON
file, aiming to complete the task as
quickly as possible.

### Provided Information:
1. A specific instruction describing the
task.
2. A description of your current position
and previous trajectories.
3. A JSON file containing details about
the scene, including rooms, viewpoints, and
objects.

The JSON file contains the following
information:

- **Objects**
- ‘object_idx‘: A unique identifier for
the object.
- ‘position‘: The spatial coordinates of
the object.
- ‘class‘: The category or type of the
object.
- ‘confidence‘: The confidence level of
the classification result.
- ‘size‘: The bounding box size of the
object (in meters).

- **Viewpoints**:
- ‘viewpoint_idx‘: A unique identifier for
the viewpoint.
- ‘position‘: The spatial coordinates of
the viewpoint.
- ‘state‘: The state of the viewpoint (‘1‘
for visited, ‘0‘ for unvisited).
- ‘neighbors‘: A list of connected
viewpoints.
- ‘has_frontier‘: Relevant only when the
viewpoint is unvisited.
- ‘True‘: The viewpoint has a frontier,
meaning unknown regions exist around it.
- ‘False‘: The area around the viewpoint
has already been observed from distant
viewpoints, but small objects may still be
unclear.
- ‘objects‘: A list of objects observable
from the viewpoint.

- **Rooms**
- ‘room_idx‘: A unique identifier for the
room.
- ‘state‘: The state of the room (‘1‘ for
fully explored, ‘0‘ for partially explored)
.
- ’distance’: The distance (in meters) the
robot needs to travel to reach this room.
- ‘viewpoints‘: A list of viewpoints in
the room.



### Task:
You must carefully analyze the JSON file,
using logical reasoning and common sense,
to select the next room to explore from the
list of partially explored rooms. Consider
the following factors:
- Evaluate how closely each room’s
viewpoints aligns with the overall task
objective.
- Optimize the exploration path by
leveraging the robot’s current momentum and
minimizing unnecessary backtracking or

redundant movements.
- Assess the likelihood that exploring the
selected room will meaningfully advance or
complete the overall task.

### Output Format:
Your response should include:
- ’steps’: The chain of thought leading to
the decision.
- ‘final_answer‘: The ‘idx‘ of the next
room to explore.
- ‘reason‘: The rationale for selecting
this room.

**Note:** The chosen room must be partially
explored.

"""

APPENDIX C
JSON STRUCTURE

Here we provide a detailed description of the task-related
context used to prompt the VLM about the current navigation
process and the currently known environmental information.

As shown in Fig. 6, it consists of the following parts:

• Target Object: It begins by specifying the target object
as "Find the <target object>".

• Current Viewpoint and Position: It then states the
robot’s current viewpoint and position as "The robot
is now at Viewpoint with position
[x,y,z] in Room ri".

• Navigation History: The navigation history up to the
current step is provided as "The robot history
trajectory is Position [x,y,z] → ,
Position [x,y,z] → ...".

• Scene Representation: The scene representation R is
formatted as a JSON file as the last part. This represen-
tation contains information about the layout and semantic
information of the environment, which is crucial for the
VLM to make informed decisions. The JSON file is
structured as the format of Rooms-Viewpoints-Objects.
For detailed json structure, please refer to Fig. 6.

Please note that when translating our representation R into a
JSON file, we begin by listing all the objects in the scene. This
is because an object may be associated with multiple view-
points; directly listing objects under each viewpoint would lead
to redundancy and may exceed the prompt’s length limit.

Prompt_info: Find the <toilet>.
You are now at node with position [-1.017, -0.126, -0.8] in the Room 1.
The robot history trajectory is: Position [ 0.0, 0.0, -0.8] --> Position [-1.017, -0.126, -0.8] 

"rooms":
[{
  "room_idx": 0,
  "state": 1,
  "distance": 100000.0,
  "viewpoints": [
    {
      "viewpoint_idx": 0,
      "position": [0.0, 0.0, -0.8],
      "has_frontier": false,
      "objects": [6, 9, 0, 1, 2, 4, 5, 7, 8, 10]
    },
    {
      "viewpoint_idx": 1,
      "position": [1.625, -0.225, -0.8],
      "has_frontier": false,
      "objects": [3, 4, 5, 6, 7, 9]
    }
  ]
}, ...... ]

"objects":
[{
  "object_idx": 0,
  "class": "door",
  "position": [-1.274, -1.083, -0.8],
  "confidence": 0.391,
  "size": [0.078, 0.853, 2.053]
},
{
  "object_idx": 1,
  "class": "luggage",
  "position": [-0.05, -0.921, -0.8],
  "confidence": 0.704,
  "size": [0.631, 0.331, 0.178]
},
{
  "object_idx": 2,
  "class": "wardrobe",
  "position": [0.972, -0.839, -0.8],
  "confidence": 0.581,
  "size": [2.909, 0.637, 2.38]
}, ...... ]

Fig. 6: Visualization of the Json file.

APPENDIX D
MORE EXPERIMENT RESULTS

We provide more experimental results on the HM3D dataset.
First we show the Success Rate on each target object category
of the HM3D dataset in Table IV. We can see that our method
achieves the best performance on most of the categories.

Method bed chair plant sofa toilet tv monitor Average

L3MVN [39] 52.9 51.6 46.4 50.1 41.5 54.2 49.5
TriHelper [42] 57.1 58.6 58.3 58.9 52.3 57.4 57.1
CogNav [2] 67.9 73.4 73.1 67.0 72.6 74.0 72.5
STRIVE (ours) 83.8 86.2 67.6 81.2 81.9 73.3 79.6

TABLE IV: Success rate of each category on HM3D [22].
The best and second best results are highlighted in bold and
underline, respectively.

We also show more qualitative results of our method on the
HM3D dataset in Figure 7. We visualize the trajectory of the
agent and the final RGB-D image when the agent stops. The
agent is able to efficiently navigate to the target object and
stop at a reasonable viewpoint to observe the object.
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Fig. 7: Qualitative results of STRIVE on HM3D. We show the trajectory of the agent and the final RGB-D image when the
agent stops.



APPENDIX E
EXAMPLES OF VLM REASONING

We provide additional examples of the VLM’s reasoning
process in Figs. 8 to 10. These results demonstrate that our
structured representation enables the VLM to reason effec-
tively over both spatial layout and semantic cues, leading to
more accurate room selection. Moreover, the VLM is able to
balance the likelihood of finding the target object with the
travel distance cost when planning room-to-room exploration.

APPENDIX F
DETAILS OF VLM-BASED VERIFICATION

A. Context-Aware Verification

For the context-aware verification, we provide more ex-
amples in Fig. 11. These examples show that the VLM can
effectively utilize the surrounding context information to verify
the detected target objects and avoid false positives.

B. Viewpoint-Optimized Re-Verification

For the viewpoint-optimized re-verification, we first intro-
duce how to compute a better viewpoint for the re-verification.
Once we detect a target object, we plan a path from the current
position to the target object and sample a series of points
along this path with a step size of 0.25m (the agent’s forward
step length) as candidate viewpoints. For each sampled point,
we compute the width (w), height (h), and visible fraction of
the target object in the camera frame when the agent faces
directly towards the target object. We traverse the sampled
points in reverse order (from the target object back to the
current position) and select the first point that satisfies all the
following conditions as the re-verification viewpoint:

1) More than 95% of the target object’s point cloud is
visible from this viewpoint.

2) The 2D bounding box area of the target object exceeds
that at the original viewpoint.

3) The estimated object width and height at this viewpoint
are both greater than 80% of their original values, scaled
by the square root of the bounding box area ratio.

The square root of the area ratio is adopted as a scaling factor
to account for the expected increase in apparent object dimen-
sions under improved viewing conditions, thereby ensuring a
broader and clearer observation for more reliable VLM-based
re-verification.

We show more examples of viewpoint-optimized re-
verification in Fig. 12. These examples demonstrate that we
select a better viewpoint for re-verification, which can help
the VLM to verify the target object more accurately. The
selected viewpoint is not only closer to the target object but
also provides a clearer view of the object, allowing the VLM
to make a more confident verification decision.

APPENDIX G
DATASET ERROR

Here we provide many annotation errors in the HM3D [22]
and MP3D [3] datasets, mainly because these two datasets

are collected from real-world scenes and rely on manual
annotation of their semantic information. This leads to many
scenes where some objects are missed or incorrectly annotated
with semantic information. In the object navigation task, this
problem is particularly serious. If the target object information
is missing in the scene, but the agent actually finds that missing
target object, this episode will be incorrectly considered a
failure. We provide some examples of annotation errors in the
HM3D and MP3D datasets for reference in Fig. 13 and 14.



Thought: Analyze the task: Find the 'toilet'.
Output : Target object: toilet.
 
Thought: Identify the current location and fully explored rooms.
Output : Current location: Room 1 (fully explored).
 
Thought: Identify the partially explored rooms available for exploration and their distances.
Output : Partially explored rooms: Room 2 (distance 2.288), Room 3 (distance 3.062). Available options: [2, 3].
 
Thought: Evaluate the likelihood of finding the target ('toilet') in each partially explored room based on visible objects.
Output : Room 2: Visible objects (furniture, door way) do not suggest a bathroom. State is partially explored with frontiers. 
Room 3: Visible objects (floor, door way) do not suggest a bathroom. State is partially explored with frontiers.
 
Thought: Determine the best strategy for exploration given no strong indicators of the target location in the visible areas. 
Prioritize exploring closer, partially explored rooms with frontiers.
Output : Both rooms are partially explored with frontiers. Room 2 is closer than Room 3.
 
Thought: Select the next room based on the evaluation and strategy.
Output : Choose Room 2 as it is the closest partially explored room with frontiers.

Final Answer: Room 2
Reason: The goal is to find a 'toilet'. Neither of the partially explored rooms (Room 2 and Room 3) contain objects in their 
visible areas that strongly suggest the presence of a toilet or bathroom. Both rooms are partially explored and have frontiers, 
meaning further exploration is needed to determine if they contain the target. In the absence of specific clues, selecting the 
closer partially explored room (Room 2, distance 2.288) is the most efficient strategy to continue the search.

Chain of Thought

Example 1

Fig. 8: Example 1 of VLM reasoning.

Thought: The task is to find a <potted_plant>.
Output : Analyze the task instruction.
 
Thought: Currently in Room 5, which is fully explored.
Output : Identify the current location and status.
 
Thought: Partially explored rooms available are 1, 2, 3, and 4.
Output : Identify the available rooms for exploration and their status.
 
Thought: Review the objects and viewpoints in each room: Room 1 (distance 4.612) has furniture, stuffed animal, lamp, box. 
Room 2 (distance 1.553) has floor, doorway, furniture, sink. Room 3 (distance 3.18) has doorway, air duct, electrical outlet, 
floor, wall. Room 4 (distance 2.9) has floor, furniture, blanket, window, doorway.
Output : Evaluate each partially explored room based on its content and distance.
 
Thought: Rooms 1, 2, and 3 don't show objects typically associated with potted plants. Room 2 (sink) seems least likely. Room 
4 contains a window, which is a common location for potted plants.
Output : Assess the likelihood of finding a <potted_plant> in each room.
 
Thought: Despite Room 2 being closer, Room 4 is more likely to contain the target object (<potted_plant>) due to the presence 
of a window. Prioritize likelihood over minimum distance in this case, assuming the distance difference is not prohibitive.
Output : Select the most promising room for exploration.
 
Thought: Room 4's state is 0, indicating it is partially explored.
Output : Confirm the selected room is partially explored.

Final Answer: Room 4
Reason: The goal is to find a <potted_plant>. I am in Room 5, which is fully explored. I need to select a partially explored 
room to search. Evaluating the partially explored rooms (1, 2, 3, 4): Room 1 contains furniture, stuffed animal, lamp, and box. 
Room 2 contains a sink, suggesting a bathroom or utility area, less likely for plants. Room 3 contains doorway, air duct, 
electrical outlet, floor, and wall. Room 4 contains furniture, blanket, and crucially, windows, which are often associated 
with potted plants. Although Room 2 is closer, the presence of a window in Room 4 makes it a more promising location to search 
for a potted plant. Room 4 also has unexplored areas (frontiers). Therefore, Room 4 is the best choice to explore next.

Chain of Thought

Example 2

Fig. 9: Example 2 of VLM reasoning.

Thought: Understanding the goal and current state.
Output : The goal is to find a 'chair'. I am currently in Room 0, which is fully explored.
 
Thought: Focusing on the available options for exploration.
Output : Evaluate the partially explored rooms (1, 2, 3) and the objects observed in each.
 
Thought: Assessing each room’s potential.
Output : Room 1 is 1.314m away and its viewpoints only see 'rug'. Room 2 is 2.601m away and its viewpoints see 'column' or no 
objects. Room 3 is 3.23m away and its viewpoints see 'table', 'rug', and 'column'.
 
Thought: Relating observed objects to the target object ('chair').
Output : A 'table' is often found in the same area as a 'chair'. Room 3 is the only room among the options where a 'table' has 
been observed.
 
Thought: Prioritizing exploration based on likelihood.
Output : Based on the observed objects, Room 3 has the highest probability of containing a 'chair' compared to Room 1 and 2.
 
Thought: Considering distance alongside potential relevance.
Output : Although Room 3 is the furthest, the increased likelihood of finding the target object justifies exploring it next.

Final Answer: 3
Reason: Room 3 is the most promising room to explore next because a 'table' has been observed there, and 'chairs' are commonly 
found with 'tables'. This suggests a higher probability of finding the target object ('chair') in Room 3 compared to Rooms 1 
and 2, where only less relevant objects like 'rug' and 'column' were seen.

Chain of Thought

Example 3

Fig. 10: Example 3 of VLM reasoning.



DINO: Television (Confidence 0.52)

Thought: Observing the shape and position of the object within the bounding box and in the 
context of the room.
Output : The bounding box contains a rectangular object with a frame, hanging on the wall.
 
Thought: Based on the visual characteristics and typical items found on walls.
Output : The object appears to be a piece of art or a photograph enclosed in a frame.
 
Thought: Matching the identified object with the options in the pre-defined list.
Output : Comparing the object to the provided list, 'picture' is the most appropriate label.

Context-Aware VerificationVLM: Picture

DINO: Sofa (Confidence 0.63)

Thought: The bounding box contains a piece of furniture covered with bedding.
Output : The bounding box contains a bed-like object.
 
Thought: Considering the context of a room with a window and wooden walls, the object 
appears to be a bed frame with a blanket or sheet.
Output : The object is likely a bed.
 
Thought: Comparing the provided list of labels, 'bed' is the most fitting description.
Output : The most appropriate label is 'bed'.

Context-Aware VerificationVLM:  Bed

DINO: Plant (Confidence 0.51)

Thought: The image shows a framed object mounted on the wall.
Output : The bounding box contains a framed item hanging on the wall.
 
Thought: Based on the visual appearance of the object within the frame, it resembles a 
picture or a piece of art.
Output : The framed item appears to be a picture or artwork.
 
Thought: Comparing the observation with object list, 'picture' is the best fit.
Output : 'picture' is the most suitable label for a framed piece of art hanging on a wall.

Context-Aware VerificationVLM:  Picture

DINO: Bed (Confidence 0.66)
Thought: Analyzing the visual characteristics of the object within the bounding box.
Output : The image inside the bbox shows a piece of furniture designed for seating multiple 
people, commonly found in a living room. It has a cushioned back and seat, and armrests.
 
Thought: Identifying the furniture type based on its form.
Output : Based on its appearance and typical function, the object is identifiable as a sofa.
 
Thought: Comparing the identified object with the allowed labels.
Output : Checking the provided list of predefined objects, 'sofa' is present.
 
Thought: Selecting the correct label from the list.
Output : The most appropriate label for the object is 'sofa'.

Context-Aware VerificationVLM:  Sofa

DINO: Television (Confidence 0.84)
Thought: Observing the full image, the bbox highlights a specific item mounted on the wall.
Output : The bounding box encloses a rectangular object hanging on the wall.
 
Thought: The primary feature is a reflective area surrounded by a dark frame.
Output : The cropped image shows a reflective surface inside a frame.
 
Thought: The reflection visible in the object is of the surrounding environment, which is 
typical for a mirror.
Output : The reflective surface is showing a reflection of the room.
 
Thought: Combining the observations of its shape, mounting on the wall, frame, and 
reflection, the object is identifiable as a mirror.
Output : Based on appearance, location, and reflective properties, the object is a mirror.

Context-Aware VerificationVLM:  Mirror

Fig. 11: Examples of context-aware verification.



Thought: Examine the provided image and the cropped image within the bounding box.
Output : Image shows a room with furniture and a doorway to another room. A bbox 
is drawn on an object in the background room. The cropped image shows a dark, 
rectangular object.
 
Thought: Consider the context in the full image. The object is placed on a piece 
of furniture that appears to be a desk or side table.
Output : The object is an electronic device on a desk-like surface.
 
Thought: Analyze the shape and appearance of the object in the cropped image.
Output : The object is dark and rectangular, resembling a screen.
 
Thought: Compare the object's characteristics to the predefined list of objects.
Output : Possible match is 'Television'.

Context-Aware VerificationVLM: Television

Thought: Initial observation of the image focuses on the object highlighted by bbox.
Output : The image shows an electronic device within the bounding box.
 
Thought: Detailed visual features of the object inside the bounding box are described.
Output : The object is black, rectangular, and appears to be placed on a table.
 
Thought: Specific characteristics of the object are identified.
Output : The object has features consistent with a printer, e.g. slots and an output tray.
 
Thought: Comparig the observed features with the expected characteristics of Television.
Output : These features are not consistent with a Television.
 
Thought: Concluding statement based on the analysis.
Output : Therefore, the object is not a Television.

Viewpoint-Optimized Re-VerificationVLM: Not Television

Thought: Observed the location and shape of the object within the bbox.
Output : The bounding box highlights a rectangular object with a dark frame.
 
Thought: Examined the content visible through the object.
Output : Through the object, outdoor scenery is visible, indicating it is transparent.
 
Thought: Compared the object's appearance to the definition of a tv_monitor.
Output : A tv is a display screen, not a transparent opening showing outdoor scenery.
 
Thought: Compared the object's appearance to the definition of a window.
Output : The object is consistent with the appearance of a window, which is a framed 
opening allowing light and view to the outside.
 
Thought: Based on visual evidence and definitions, concluded the object is not a tv_monitor.
Output : Therefore, the object in the bounding box is a window, not a tv_monitor.

VLM: Not Television

Thought: The bounding box is located on the tiled backsplash in a kitchen.
Output : Location identified as kitchen backsplash.
 
Thought: The image shows a rectangular object with a reflective surface and a 
dark frame.
Output : Object has reflective surface and dark frame.
 
Thought: Considering the context of a kitchen wall and the appearance of the 
object, it resembles a small screen.
Output : Object appears to be a small screen.
 
Thought: Among the provided labels, 'tv_monitor' is the most fitting description 
for a screen mounted on a wall.
Output : Selected 'tv_monitor' from the list.

VLM: Television Context-Aware Verification Viewpoint-Optimized Re-Verification

Thought: Initial observation of the image and the bounding box.
Output : The image displays a wooden object enclosed within a purple bounding box.
 
Thought: Identifying key features of the object inside the box.
Output : The object has a keyboard area, a music stand, and a wooden bench in front of it.
 
Thought: Relating the observed features to known objects.
Output : These features are characteristic of a piano.
 
Thought: Recalling the definition and appearance of a sofa.
Output : A sofa is a piece of furniture designed for seating multiple people.
 
Thought: Comparing the object in the box to the characteristics of a sofa.
Output : The object in the bounding box does not resemble a sofa.
 
Thought: Concluding based on the comparison.
Output : Therefore, the object within the bounding box is not a sofa.

VLM: Not Sofa

Thought: The bounding box highlights a piece of furniture in the background.
Output : furniture
 
Thought: The furniture appears to be a soft seating item, likely a sofa or 
couch.
Output : sofa
 
Thought: Considering the available labels, 'sofa' is the most appropriate 
description for the object.
Output : sofa

VLM: Sofa Context-Aware Verification Viewpoint-Optimized Re-Verification

Fig. 12: Examples of viewpoint-optimized re-verification.

Find the  <toilet>

Find the  <chair>

Find the  <television> Find the  <chair>

Find the  <toilet>

Find the  <plant>

Fig. 13: Example of HM3D [22] dataset error causing episode failure. The target object is not annotated in the scene, but
the agent finds it. This episode will be incorrectly considered a failure.



Find the  <Cabinet>

Find the  <Chair>

Find the  <Counter>

Find the  <Stool>

Find the  <Cabinet>

Find the  <Chair>

Find the  <Picture>

Find the  <Towel>

Find the  <Stool>

Find the  <Bed>

Find the  <Plant>

Find the  <Chair>

Find the  <Cushion>

Find the  <Table>

Find the  <Counter>

Find the  <Fireplace>

Find the  <Sofa>

Find the  <Sink>

Find the  <Sink> Find the  <Bed>

Fig. 14: Example of MP3D [3] dataset error causing episode failure. The target object is not annotated in the scene, but
the agent finds it. This episode will be incorrectly considered a failure.



APPENDIX H
ROOM SEGMENTATION

Based on the scene point cloud, we first construct a top-
down-view 2D histogram and extract the wall borders, result-
ing in a binary mask that highlights the walls in the scene.
Next, we generate a whole-scene mask by combining the
detected walls and point cloud. After obtaining the whole-
scene mask, we gradually dilate the background to obtain
the room segmentation. To be specific, we gradually dilate
the background. After each dilation step, we check all the
connected components in the scene. If a component’s area is
smaller than a threshold, we mark it as a room and remove that
area from the dilated whole-scene mask. We continue dilating
the background until no new disconnected regions are found.
Finally, we use the marked rooms as seeds and apply the
watershed algorithm on the whole-scene mask to obtain the
final room segmentation results.

Point Cloud Wall Boarders Whole Scene Room Segmentation

Extract Dilate

Fig. 15: Visualization of room segmentation process.
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